ASABE is a professional and technical organization, of members worldwide, who are dedicated to advancement of engineering applicable to agricultural, food, and biological systems. ASABE Standards are consensus documents developed and adopted by the American Society of Agricultural and Biological Engineers to meet standardization needs within the scope of the Society; principally agricultural field equipment, farmstead equipment, structures, soil and water resource management, turf and landscape equipment, forest engineering, food and process engineering, electric power applications, plant and animal environment, and waste management.

NOTE: ASABE Standards, Engineering Practices, and Data are informational and advisory only. Their use by anyone engaged in industry or trade is entirely voluntary. The ASABE assumes no responsibility for results attributable to the application of ASABE Standards, Engineering Practices, and Data. Conformity does not ensure compliance with applicable ordinances, laws and regulations. Prospective users are responsible for protecting themselves against liability for infringement of patents.

ASABE Standards, Engineering Practices, and Data initially approved prior to the society name change in July of 2005 are designated as ‘ASAE’, regardless of the revision approval date. Newly developed Standards, Engineering Practices and Data approved after July of 2005 are designated as ‘ASABE’.

Standards designated as ‘ANSI’ are American National Standards as are all ISO adoptions published by ASABE. Adoption as an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by ASABE.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

CAUTION NOTICE: ASABE and ANSI standards may be revised or withdrawn at any time. Additionally, procedures of ASABE require that action be taken periodically to reaffirm, revise, or withdraw each standard.

Copyright American Society of Agricultural and Biological Engineers. All rights reserved.

ASABE, 2950 Niles Road, St. Joseph, MI 49085-9659, USA ph. 269-429-0300, fax 269-429-3852, hq@asabe.org
Manure Storage Safety

Developed by the ASAE Swine Housing Committee; approved by the Structures and Environment Division Standards Committee; adopted by ASAE January 1992; reaffirmed December 1996, December 1997, reaffirmed for one year February 2003; reaffirmation extended one year by SE-03 February 2004; reaffirmed February 2005.

1 Purpose and scope
1.1 The purpose of this Engineering Practice is to set forth existing known practices on manure storages that help (1) minimize the hazards of manure gases to livestock and humans, and (2) minimize the potential for drownings at manure storage sites.
1.2 This Engineering Practice does not include the design loads or structural specifications for manure storages (see ASAE Engineering Practice EP393, Manure Storage).
1.3 This Engineering Practice contains information on safety equipment, management suggestions on safety, and the manure gases hydrogen sulfide, methane, ammonia, and carbon dioxide. Also given is a listing of the maximum safe gas concentrations, related standards and practices, and pertinent references.

2 Background
2.1 Liquid or semi-solid manure that is handled or set in motion by pumping, mixing, spreading, or cleaning-out can release large amounts of gases. The quantity released depends on the animal species, temperature, fluidity of the manure, pH, length of storage time, and type of handling system. The gases of concern are hydrogen sulfide, H₂S, carbon dioxide, CO₂, methane, CH₄, and ammonia, NH₃. (See Section 8—Technical Information on Manure Gases, for more information on these gases.)
2.2 Manure gases have been fatal to both livestock and humans. Humans have died when they entered a manure storage without a supplied air respirator or a self-contained breathing apparatus. Animals and humans have died when liquid manure stored under slotted floors was agitated and gases were released. Animal performance in partial and total slotted floor enclosed buildings is impaired when pit gas concentrations exceed recommended limits.

3 Potentially lethal situations
3.1 Fatalities that occur when agitating manure are generally caused by compounding the toxic effect of H₂S with the asphyxiating effect of oxygen, O₂, depletion by other gases. (See Section 8—Technical Information on Manure Gases, for toxic levels.)
3.2 Methane explosions can result from concentrations of the gas within flammable limits. These concentrations can occur during agitation or when the gas is trapped in an improperly ventilated space over extended periods of time.
3.3 When ventilation equipment fails, the concentrations of manure gases and animal respiration air increase due to the lack of fresh air dilution.
3.4 Drownings of humans or animals can occur in aboveground tanks, below-ground tanks, or earthen storages. Livestock deaths have occurred due to structural failure of floorings or covers over storages or due to open gates.
3.5 Protective barriers or railings around openings can prevent accidents. Push-off platforms or ramps (piers) can be a site where the tractor scraper driver can tumble into an open storage. These should be protected with a sturdy railing or semicircular metal support embedded in concrete (i.e., hook).
3.6 Thick crusts on dairy and beef storage basins can appear solid, but may break under the weight of humans, animals, or equipment. Swine manure usually has a very thin crust if any.

4 Controlling manure gases with ventilation
4.1 Properly designed and operated ventilation systems help prevent accidents by removing or diluting levels of toxic gases in confinement units.
4.2 Exhausting air from below slotted floors, especially when agitating the manure, decreases concentrations of manure gases at animal level. However, the concentration still may be excessive for humans and animals. Two methods of gas removal are (1) isolated nonducted pit fans, and (2) pit fans connected to perforated plastic pipes or plenums under the slotted floors or under elevated pens (pig decks). Fans connected to correctly sized perforated ducts or plenums have more exhaust points and generally reduce the undesirable gas level more than isolated fans, especially at low airflow rates. As with the area fan, the duct or plenum needs to be at least 0.3 m (1 ft) above the manure level for reducing pit gas levels. Spacing of perforated ducts or plenums should not exceed 4 m (13 ft) in order to be effective.
4.3 The design of the air intake system of a building has a significant effect on airflow patterns within the building and on pit gas concentrations. The airflow patterns should ensure that gases generated by the manure are moved away from the animals. (This airflow pattern may not always be the best design for keeping partially slatted pens clean in the case of swine.) Dilution and removal of gases is as important as controlling building temperature and humidity.
4.4 Isolated pit fans and pit ventilation should be installed at separate sites from the manure removal locations such as pump-outs and clean-out extensions. It is vital that ventilation continue at maximum rates during pit agitation.
4.5 Sealed manure pits or capped pits within structures should be ventilated with an exhaust fan and air inlet(s) to provide for pit gas escape.
4.6 In mechanically ventilated buildings, a warning device should be installed to inform the farmer if there is a ventilation system failure. Brief power outages may be common in some areas. Stand-by generators are a good investment for confinement facilities (see ASAE Engineering Practice EP270, Design of Ventilation Systems for Poultry and Livestock Shelters).

5 Special design and construction safety considerations for new manure storage facilities
5.1 The following considerations should be incorporated in the design and construction of liquid manure systems for a new or remodeled building:
5.1.1 Manure slurry will tend to separate into solid and liquid fractions in storage. Agitation is needed to resuspend the solids and to aid in completely emptying a storage. Provisions such as pump-out ports, agitation pump drop-in access locations in the pit sidewall or pit lid or access for trailer-mounted pumps for earthen storages are needed. Without adequate agitation during unloading, solids will build up and result in reduced storage capacity and higher levels of gas production.
5.1.2 All manure pump-out openings should be located outside enclosed buildings in order to reduce the danger of working in a confined area.
when unloading or agitating a storage. The number of manure access points and/or agitation points needed varies with pit size, under-slat style of storage, animal species, and ration. Vacuum tank pump out holes should be 6 m (20 ft) on center on both sides of enclosed total slotted floor deep pit building and on one side of an enclosed partially slotted floor deep pit building. Agitation holes for vertical shaft pumps can be spaced up to 20 m (65 ft) on center (depends on building width). An exception to keeping pump-out openings outside is buildings which are naturally ventilated and three sided or very open. Individual or gang slats are generally removed to drop in the vertical shaft liquid manure pump for agitation and manure removal. Divider walls in pits may be needed to keep ventilation air separate in multiple room buildings. This can affect the agitation hole and pump out hole spacings.

5.1.3 Tank openings should be guarded with grills and/or covers to prevent humans, animals, equipment, and other objects from accidentally falling into the storage structure. Removable covers and grills should be provided on openings for agitation and pumping equipment. Removable covers and grills should be designed to prevent their accidental loss into the tank and their unintentional removal. They should be designed for simple removal and replacement to encourage their use.

5.1.4 Ladders should not be installed on the outside of aboveground tanks unless they are terminated above the reach of an innocent bystander. A safety decal indicating not to leave ladders or climbing equipment near or around the structure should be located next to the ladder. The ladder cage and/or platform should conform to ASAE Standard S412, Ladders, Cages, Walkways and Stairs.

5.1.5 Railings are needed on open manure storages that are below or partially below ground. Storages that are open and above ground would not need a railing. All push-off platforms or piers for open, below-ground manure storage structures need a barrier strong enough to stop a slow-moving tractor or skid loader. Hinged grates, solid covers, or the equivalent are needed for all scrape-in openings to prevent the inadvertent entry of animals and people.

5.1.6 Open storages should be fenced in unless they are aboveground tanks. Warning signs should be posted (see paragraph 7.5).

5.1.7 When the manure storage is outside and pipe-connected to a building, a water seal, gas trap, or other device should be provided to prevent gases in the storage structure from entering the building, especially during agitation. A clean-out access external to the facility should be incorporated to allow unlogging of a drain pipe or storage filling pipe.

5.1.8 Buildings above manure pits should be ventilated at or above the minimum or cold weather ventilation rates given in ASAE Engineering Practice EP270, Design of Ventilation Systems for Poultry and Livestock Shelters. A heater may be needed in cold weather so minimum recommended ventilation levels can be achieved without lowering the building temperature below critical levels.

5.1.9 Typical holding tanks, which hold a week’s supply of manure, should have 2 holes in their lids. One is needed for the pump or pump access (submersible), and one for a 0.6 m (2 ft) diameter corrosion-resistant exhaust fan. The holes should be on opposite ends of the tank. The fan should be wired to operate at full speed only. A manual on/off switch should be within 2 m (6 ft) of the fan. The fan is needed for emergency situations when human access to the tank is needed (see Section 7—Safety Equipment, Warning Signs, Management Suggestions).

5.1.10 Electrical equipment should conform to American National Standard ANSI/NFPA 70, National Electrical Code. An electrical shut-off should be installed outside the building (see ANSI/NFPA Standard 70).

6 Safety signs and operator’s manual

6.1 The user of the manure storage shall be provided with the appropriate safety information. The information in Section 7—Safety Equipment, Warning Signs, Management Suggestions, should be used as a basis for safety instructions to be included in the operator’s manual and on signs. These should be provided when the manure storage is constructed.

7 Safety equipment, warning signs, management suggestions

7.1 Hazard control and accident prevention are dependent upon the awareness, concern, and prudence of personnel involved in the operation, maintenance and use of equipment, and facilities. These safe practice messages are recognized as being effective for enhancing safety, but may not cover all possible hazardous situations; hence, they should be interpreted judiciously and not necessarily reproduced verbatim. These safety practices should be followed if the tank or pit has ever been used, regardless of how long ago.

7.2 Rescue equipment such as harnesses, ropes, respirators, and block and tackle should be located near the manure storage area. The location should be clearly marked. Gas detection equipment such as detector tubes and/or instruments designed to detect combustible gases and hydrogen sulfide should be available and located in a warm, dry area. Detector tubes and sensors in gas detection instruments have expiration dates. Checks should be made periodically to be sure that the equipment is operational and properly calibrated and has not been removed. The phone numbers of the local fire department/rescue squad should be posted in a box mounted on a pole near an outside storage or on a wall in an inside storage building. These numbers should be posted near all the telephones on the farm.

7.3 After agitating manure storages under buildings and before entering, NH₃, CH₄, and H₂S levels in the building should be monitored. Animals should be observed through windows for strange behavior. These gases should also be monitored in small collection pits or manure transfer pits and in aboveground storages before going down into these pits or storages with appropriate safety equipment.

7.4 If it is absolutely necessary to enter a transport tank, a below-ground storage, or a pit, then specialized safety equipment such as a supplied air respirator, which supplies grade D breathing air, or a self-contained breathing apparatus must be used by those who are trained and familiar with the use of this equipment. Persons who are not familiar with the equipment and proper maintenance should not purchase or borrow air supplied breathing apparatus for use in potentially life threatening environments. In rural areas, the local fire department, sheriff’s office, or rescue unit should be contacted and requested to come to the site. In many cases where people are overcome by pit gases or lack of oxygen two or more people have died. It is not possible to “hold your breath” and rescue someone. Procedures in the National Institute for Occupational Safety and Health (NIOSH) publication, No. 80-106, Working in Confined Spaces, should be followed.

7.5 Warning sign contents—safe management suggestions. Another important piece of safety equipment, in addition to the safety sign in paragraph 5.1.6, is a warning sign dealing with the management of the storage. The management suggestions that pertain to the manure storage should be listed prominently on at least one corrosion resistant sign. These suggestions could be condensed and referenced to an operator’s manual. ASAE Standard S441, Safety Signs, should be followed. Special hazardous considerations which should be addressed through appropriate safety signs for various types of storage include but are not limited to the following (wordage only suggested):

7.5.1 Under-floor storages. Sign(s) should be located on the outside of the building wall and near the entry door.

7.5.1.1 After agitation of manure in under-floor storage, the atmosphere in the storage and in the building space above the storage may contain hazardous gases, explosive air mixtures and/or insufficient oxygen for animals and humans.

7.5.1.2 Always maintain at least 0.3 m (1 ft) freeboard between the manure surface and bottom of the flooring in under-floor storages to minimize pit gas concentrations at floor level for animals. This same freeboard is necessary before commencing agitation to ensure that pit
gases can be removed by pit fans. If pit ducts and plenums are used, they should be inspected for dust accumulation every year and cleaned if needed. Ducts and plenums can be cleaned with pressure washers or with chimney sweep brushes. Leaving a small diameter cable or wire in small rigid PVC pipe type ducts allows pulling brushes through them. Holes should be placed in the bottom of the ducts instead of at 9 and 3 o'clock positions to make cleaning easier and to reduce dust build-up. Pit fans should have their guards removed permanently on the side toward the pit because they will quickly clog with dust and reduce the fan's capacity.

7.5.1.3 Provide maximum ventilation during pumping and agitation. Keep all pit ventilation in operation during manure removal and for at least 12 h afterward (ideally 3 to 4 days). If the pit is pumped out in winter, use the maximum ventilation rate as long as possible, since the highest hydrogen sulfide levels occur shortly after start-up of agitation pumps. The building interior should be off-limits to people, and if possible, animals should be evacuated.

7.5.1.4 Do not try to rescue an animal if it falls over during pit agitation. Turn off the pump and ventilate the building until gases have had a chance to escape and be diluted. Test the building atmosphere for toxic gas levels before entering (H₂S is most critical toxic gas).

7.5.1.5 Do not enter an under-floor covered storage or pumping station without using the proper respirator equipment. In addition these safety practices are needed: (a) Shut off any manure pumps, (b) ventilate storage or pumping station at the maximum rate, (c) test the storage or station air for O₂ level and toxic gas levels, (d) attach a safety harness and rope to the working person with at least one person standing by to help with a mechanical retrieval device, and (e) have on hand an extra set of proper respirator equipment for the person standing by.

7.5.1.6 Don’t smoke, weld, or use an open flame in confined, poorly ventilated areas where CH₄ can accumulate. Maintain electric motors and wiring in good condition near manure storages. Use watertight and dust-tight electrical fixtures (see ANSI/NFPA Standard 70, National Electrical Code). A sign should be posted to say “Danger No Smoking” during agitating and for 3 to 4 days after.

7.5.1.7 Keep all safety guards and shields in place on pumps, pump hoppers, tank wagons, power units, etc. Do not allow children or irresponsible people near any operating equipment. Do not enter tank wagons. Use caution when working on the agitation pump spout to change its direction in order to prevent falls.

7.5.1.8 Consult with your physician if you have been exposed to H₂S or NH₃ in concentrations severe enough to cause irritation to the respiratory tract (as indicated by difficulty in breathing).

7.5.2 Underground covered storages or pumping stations. Locate sign(s) near agitation hole(s).

7.5.2.1 Make sure hazardous gases are not being pulled back into a livestock building when agitation is occurring (see also paragraph 5.1.7).

7.5.2.2 Do not enter underground covered storage or pumping station without using the proper respirator equipment. In addition these safety practices are needed: (a) Shut off any pumps, (b) ventilate the storage or pumping station at the maximum rate, (c) test the storage or station air for O₂ level and toxic gas levels, (d) attach a safety harness and cable to the working person with one person standing by to help with a mechanical retrieval device, and (e) have an extra set of proper respirator equipment on hand for the person standing by.

7.5.2.3 Keep all safety guards and shields in place on pumps, pump hoppers, tank wagons, power units, etc. Do not allow children or irresponsible people near any operating equipment. Do not enter tank wagons. Use caution when changing spout direction on agitation pumps in order to prevent falls.

7.5.2.4 Consult with your physician if you have been exposed to H₂S or NH₃ in concentrations severe enough to cause irritation to the respiratory tract (as indicated by difficulty in breathing).

7.5.3 Earthen storages. Sign(s) should be located on the fence near entry gate.

7.5.3.1 Post warning sign(s) that say “Danger Manure Storage” or “Danger Keep Out,” or “Danger Keep Away.”

7.5.3.2 Dairy and beef manure may crust over and even have growing vegetation in bottom loaded storages, but the surface will not support the weight of humans, animals or equipment.

7.5.3.3 Keep all guards and safety shields in place on pumps, pump hoppers, tank wagons, power units, etc. Do not allow children or irresponsible people near any operating equipment. Do not enter tank wagons. Use caution when working on the agitation pump spout to change its direction in order to prevent falls.

7.5.4 Above/below-ground tanks (concrete, steel, etc.) without covers. Sign(s) should be located at eye level on tank surface near agitation location.

7.5.4.1 Post warning sign(s) that say “Danger Manure Storage” or “Danger Keep Out,” or “Danger Keep Away.”

7.5.4.2 Keep all safety guards and shields in place on pumps, pump hoppers, tank wagons, power units, etc. Do not allow children or irresponsible people near any operating equipment. Do not enter tank wagons. Use caution when working on the agitation pump spout to change its direction in order to prevent falls.

7.5.4.3 Consult with your physician if you have been exposed to H₂S or NH₃ in concentrations severe enough to cause irritation to the respiratory tract (as indicated by difficulty in breathing).

7.5.4.4 Do not enter the storage before (a) testing the pit air for toxic gas levels, (b) using the proper respirator equipment, and (c) attaching a safety harness and rope to the working person with at least one person standing by to help if needed.

8 Technical information on manure gases

8.1 Hydrogen sulfide (2), (10), (11)

8.1.1 Hydrogen sulfide, the most dangerous of manure gases, is colorless and smells like rotten eggs, although at low concentrations this odor is easily masked by other building odors. It is heavier than air (specific gravity relative to air=1.190 at 20 °C (68 °F), and 760 mm Hg) and soluble in water at basic pHs. It is produced from the anaerobic decomposition of organic materials. Hydrogen sulfide is normally released from all stored manure, but it is most dangerous with agitated liquid manure. The release is generally very slow in undisturbed manure and at low temperatures. Concentrations reaching 280–420 mg/m³ (200–300 ppm) have been reported within a few minutes after the start of manure agitation and have been as high as 1400 mg/m³ (1000 ppm) during vigorous agitation. In addition to times of agitation, H₂S is also released from liquid which is recycled back from lagoons and reduced solids level storages for flushing. The solids levels can be reduced by gravity separation in settling tanks or mechanical separators. Excessive levels of 220 mg/m³ (160 ppm) have been measured in pig buildings even with mechanical separators and when recharging from a separated liquids storage pond (not lagoon). Unless fresh water is added lagoons can turn into storage ponds when drought conditions occur.

8.1.2 H₂S’s characteristic odor does not give adequate warning because it paralyzes the olfactory system. Thus the sense of smell is rapidly diminished, and high concentrations do not give a perceived proportionally greater odor. The effects on humans of various concentrations are given in Table 1.

8.1.3 Pigs are made uncomfortable (stressed) by prolonged exposure to low levels of H₂S. Pigs exposed continuously to at least 28 mg/m³ (20 ppm) develop fear of light, loss of appetite, and nervousness. Continuous exposure to 70–340 mg/m³ (50–240 ppm) causes vomiting, nausea, and diarrhea. In acute poisoning, H₂S acts so rapidly that there are few symptoms of imminent danger. Sudden nausea and unconsciousness are followed by death at concentrations of 1120 mg/m³ (800 ppm) or above.
8.3 Ammonia (2), (3), (4), (6), (10), (11)

and human health and performance in normally ventilated buildings. Explosive. Methane is not toxic and is unlikely to adversely affect animal scrapers or with bedded packs can have NH3 levels as high as those found in shallow and deep pit buildings. The minimum perceptible level is about 36 mg/m3 (50 ppm) and the respiratory tract is affected at about 77 mg/m3 (100 ppm). Since NH3 is very irritating at levels of 72 mg/m3 (100 ppm) and the respiratory tract is affected at about 280–420 ppm. Methane is colorless, odorless, and lighter than air (specific gravity relative to air=0.554 at 20 °C [68 °F] and 760 mm Hg). It is slightly soluble in water. Ammonia concentrations are just above the floor. The only standards governing permissible levels in under-floor manure storages. Explosive concentrations of methane may be released during liquid manure agitation and remain for several weeks after emptying the storages. Air mixtures containing 33,000–99,000 mg/m3 (50,000–150,000 ppm or 5–15% CH4) are explosive. Methane is not toxic and is unlikely to adversely affect animal and human health and performance in normally ventilated buildings. Methane is an anhydriotic and cause suffocation by displacement of oxygen from the lungs. Replacing oxygen should revive a victim.

8.3 Ammonia (2), (3), (4), (6), (10), (11)

8.3.2 Ammonia tends to produce discomfort in animals. Excessive concentrations of NH3 can be more irritating than NH4. The allowable levels are 14 mg/m3 (10 ppm) for people in an office building run about 1260 mg/m3 (700 ppm) or less for good air quality.

8.5 Maximum safe gas concentrations (9), (12)

8.5.1 Animals in confinement are exposed to their environments continuously, whereas, people can get relief from hazardous or irritating situations. For this reason, it is important that careful consideration be given to the quality of the environment within the animal zone or the level just above the floor. The only standards governing permissible levels in confinement buildings are those providing safe environments for workers (see Table 2). The maximum safe gas concentrations for an 8 h workday and 40 h workweek exposure for humans, established by the American Conference of Government Industrial Hygienists, are called threshold limit values, TLV. The values are expressed in milligrams per cubic meter, mg/m3, or parts per million, ppm. Safe gas levels for animals have not been established. However, several researchers have reasoned that animal responses are similar to those of humans. The allowable levels should vary with animal weight and time exposure.

Cited Standards:
ANSI/NFPA 70, National Electrical Code
ASAE EP270, Design of Ventilation Systems for Poultry and Livestock Shelters
ASAE EP393, Manure Storage
ASAE EP470, Design of Poultry and Livestock Shelters

Table 1 – Hydrogen sulfide effects at various concentrations (4), (10)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>(H2S)</th>
<th>Effect on humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/m3</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>0.005</td>
<td>Barely detectable</td>
</tr>
<tr>
<td>5.6</td>
<td>4</td>
<td>Easily detectable, moderate odor</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>Eye irritation</td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>Unpleasant odor</td>
</tr>
<tr>
<td>140</td>
<td>100</td>
<td>Coughing, eye irritation, loss of smell after 2–15 min exposure</td>
</tr>
<tr>
<td>280–420</td>
<td>200–300</td>
<td>Eye inflammation and respiratory tract irritation after 1 h</td>
</tr>
<tr>
<td>700–980</td>
<td>500–700</td>
<td>Loss of consciousness and possible death in 30–60 min</td>
</tr>
<tr>
<td>1120–1400</td>
<td>800–1000</td>
<td>Rapid unconsciousness, cessation of respiration and death</td>
</tr>
<tr>
<td>1400</td>
<td>1000</td>
<td>Diaphragm paralysis on first breath, rapid asphyxiation</td>
</tr>
</tbody>
</table>

Table 2 – Maximum safe gas concentrations for an 8-H exposure for humans (3)

<table>
<thead>
<tr>
<th>Gas</th>
<th>mg/m3</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide, CO2</td>
<td>9000</td>
<td>5000</td>
</tr>
<tr>
<td>Ammonia, NH3</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Hydrogen Sulfide, H2S</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Methane, CH4</td>
<td>655</td>
<td>1000</td>
</tr>
</tbody>
</table>

TLV-TWA stands for Threshold Limit Value (Time Weighted Average). The values listed are for 25 °C (77 °F). The concentration of these gases is temperature dependent.
References