
NASIS SQL GUIDE

1
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

USDA Natural Resources Conservation Service

NASIS SQL Guide
Structured Query Language for Query and Report Writing

5/4/2012

NASIS SQL GUIDE

2
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

NASIS SQL GUIDE

3
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Table of Contents
NASIS SQL Guide ... 5

SQL .. 5
SQL Syntax .. 5

Keywords .. 5
Identifiers ... 6
Operators or Functions ... 6

Workshop Examples and Exercises .. 7
Data types and comparison operators ... 8
Wildcard characters.. 10

Queries ... 11
Queries ... 12
Use of the Question mark “?” .. 15
Use of “>, <, =” comparison operator .. 16
Use of “?”parameter .. 17
Use of “IN ()” and “IN (?)” parameter.. 18
Use of BETWEEN command ... 20

Exercises ... 21
Adding additional tables ... 22
Target Tables .. 23
Join Conditions ... 25
Exercises ... 27
Use of the OR command .. 28

Exercises ... 29
Arithmetic Operators ... 30

Exercises ... 30
Outer Joins .. 31

Exercises ... 31
Types of joins .. 32

Join Examples ... 32
Identifying Specific Joins... 34
Subqueries using the EXISTS operator ... 35

Exercises ... 35
Subqueries using the NOT EXISTS operator ... 36

Exercises ... 36
Subqueries using the = operator .. 37

Correlated subquery ... 37
Uncorrelated subquery... 37

Subqueries using the IN operator .. 38
Exercises ... 38

NASIS Reports ... 39
Query .. 43

SINGLE TABLE QUERY ... 43
MULTIPLE TABLE QUERY ... 44

NASIS SQL GUIDE

4
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

JOINS ... 46
CODELABEL and CODENAME .. 48
AGGREGATION.. 49
Aggregation Exercise .. 53
ARITHMETRIC FUNCTIONS ... 55
REAL TABLES ... 58
SUBQuery ... 59
JOINING MULTIPLE SQL STATEMENTS.. 60
Query Exercises .. 63

Data Manipulation .. 64
DEFINE .. 64
ASSIGN .. 65
DERIVE .. 65
PARAMETER .. 66
REGROUP .. 71
LOOKUP .. 73
ARRAY ... 75
WTAVG ... 77
INCLUDE and ACCEPT ... 78
CROSSTAB ... 80
COUNT .. 83

Output .. 86
TEMPLATE, SECTION, COLUMN FORMAT ... 86
FONT ... 87
MARGIN .. 87
PAGE ... 87
PITCH .. 88
TEMPLATE ... 88
HEADER and FOOTER .. 88
DATE, SUBTITLE, SKIP LINES .. 90
SECTION .. 92
LINE SPECIFICATIONS .. 96
COLUMN SPECIFICATIONS .. 97

Interpretation Reports ... 99
MANU - Sewage Disposal text .. 99
MANU - Sewage Disposal html ... 102

HTML Reports ... 105
HTML Examples .. 107
HTML Report Format Rules .. 111

APPENDIX html formatting ... 112
ELEMENTS ... 112
TAGS ... 114
COLOR CODING .. 116

Web URL reports .. 121
NHQ - Project Plans (all) by Soil Survey Office html ... 122

Exercises ... 124
Queries ... 124
Reports ... 126

NASIS SQL GUIDE

5
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ERROR MESSAGES .. 130

NASIS SQL Guide
This guide is designed to provide the NASIS user an understanding of SQL and its various uses in NASIS.
SQL is used to write queries, reports, properties, calculations and validations. An understanding of the
NASIS data structure (tables and columns) is required before using SQL.

This document is to be used with the NASIS web site References. These documents are necessary for
understanding the Query and Report writing process:

• The “Tables and Columns” document identifies the NASIS tables and its columns.
• The “NASIS CVIR Language Manual” Scripting language for NASIS Calculations,

Validations, Interpretations and Reports.
• NASIS Data Structure Diagrams.
• Data types and Comparison Operators chart in this document.

SQL

To become adept at writing queries, the user must have knowledge of the Structured Query Language
database language. SQL, as it is commonly referred to, was created by IBM in the early 1970s as a
unified language for defining, querying, modifying and controlling the data in a relational database.
There are now over 75 different flavors of SQL in commercial use. NASIS originally used the Informix
database and is now using the Microsoft SQL Server database. The basic SQL structure is standardized
between commercial databases however there are dialect differences. This document will focus on the
SQL Server dialect and how it is used with the various soils databases. SQL is used in NASIS and the Soil
Data Mart, the Soil Data Access site and Web Soil Survey. Understanding SQL will allow the user the
ability to query data or write reports from these various databases and sites.

SQL Syntax

A SQL statement contains several elements. The SQL has certain “Keywords” that have special meaning.
They are typically entered in UPPERCASE, however SQL is not case sensitive. This is done for
organization purposes only. The statement also contains identifiers which are the names of the
databases, tables and columns. Typically, identifiers are entirely in lower case. And, the statement
contains operators or functions are used for comparisons or mathematical equations. The operator can
be used for arithmetic (+ or -) or as comparisons (> or =) or as logical (AND, OR, NOT) or aggregate
functions (MAX, MIN, SUM, COUNT, AVG).

Keywords
The basic SQL statement consists of 3 key words:

• SELECT (column)
• FROM (table)
• WHERE (condition)

NASIS SQL GUIDE

6
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

The SELECT clause:

• specifies the columns (e.g. musym, muname, mukind) to be retrieved,
• each column must have a unique name,
• allows for expressions that must follow normal SQL syntax

 (e.g. sandtotal_r + silttotal_r + claytotal_r AS particle_size),
• if expressions are used in the select statement, an alias (e.g. “particle_size”)

must be used with the expression to provide a unique name.

The FROM clause:

• specifies all the tables used in the query,
• and may specify aliases and outer joins.

The WHERE clause:

• filters which rows to use in the FROM clause
• uses normal SQL conditions and
• uses the NASIS "JOIN table TO table" syntax to simplify writing join conditions,
• and the two tables in a JOIN condition must have a relationship

Example:

SELECT nationalmusym, muname
FROM mapunit
WHERE muname = “Harney silt loam, 0 to 1 percent slopes”;.

Identifiers
The NASIS and SSURGO metadata reports, found on the appropriate web sites, contain the identifiers
needed for SQL statements. The “Tables_and_Columns.pdf” document provides the list of tables and
the columns within each. These documents are designed to provide the user with information
necessary to write SQL statements.

Operators or Functions
The arithmetic operators, comparison operators, logical operators and the aggregate functions are used
to filter the search functions of the WHERE clause. In this document on page 6 a chart is provided that
identifies the data types and the various comparison operators that can be used. Further information
on the various operators and functions will be discussed as they are introduced in this document.

NASIS 6 contains a national database (server), local database (client), and a selected set (screen).
Queries and Reports are designed to run off either the national database or the local database. Queries
run against the National database require an Object table (e.g. Legend, Mapunit, Datamapunit), whereas
queries written for the Local database can be written to retrieve child table data (e.g. Correlation,
Component, Horizon, etc).

NASIS SQL GUIDE

7
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Workshop Examples and Exercises
The examples in this section are a sample of some approaches to writing NASIS reports. Over time, you
will develop your own techniques and style. Exercises in this section build on concepts demonstrated in
the examples. These exercises provide an opportunity for you to develop your own approaches to
creating NASIS reports.

When writing reports from scratch, it helps to have a report writing methodology similar to that
described for writing queries in the NASIS User Guide. You may ask yourself several questions.

• What data do I want in the report?
• Are the data in the database or do they need to be calculated or decoded?
• In which tables are the data?
• What tables are needed to complete the joins between tables?
• How do I want the data organized?
• How do I want the page layout to look?

After you have defined what you want in your report, write your report using the statements and
guidelines in this technical reference guide. Trial and error is almost always needed to write a report
that runs cleanly. Seldom will a report be written perfect on the first try. With practice however,
moderately complex reports can be written to meet a wide variety of uses.

In some cases, existing reports can be found that nearly meets the users’ needs. A short-cut to writing a
new report is to simply copy the existing report and modify it to meet the needs. Scan the existing
report to identify parts that need to be modified and make the changes. Even with this short-cut, trial
and error is needed to create a report that runs cleanly and provides the desired result.

NASIS SQL GUIDE

8
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Data types and comparison operators
The data type (integer, character, etc.) and comparison operators (matches, “=”, “>”, “is null”, etc) are
used to establish query conditions. There is a relationship between the comparison operator and data
types that must be understood. When a query is written to specify a condition in the WHERE clause,
there must be a comparison operator (such as = or MATCHES) that is compatible with the data element
in the query conditions. For example, the data element "area name" is a "Variable Character" data type
and the MATCHES operator is valid for this data type. (MATCHES is case insensitive except for Area
symbols and Map unit symbols. Whereas equals “=” indicates an exact match [IMATCHES was
previously used for case insensitive in the SQL, but now only works in DEFINE statements.]).

 Data Type Comparison Operator

 = != > < >= <=
IS

NULL

IS
NOT
NULL

LIKE
" "

MATCHES
" "

BETWEEN
AND

IN
()

Character
Variable
Character
(String)

Text
(narrative
text)

III III III III III III IV IV III III

Float IV IV
Smallfloat IV IV
Integer IV IV
Smallint IV IV
Datetime IV IV
Bit
(Boolean)

 IV IV

Ordered
Code
(choice)

 IV IV

Unordered
Code
(choice)

 II II II II IV IV II

Property III III III III III III IV IV III III
Evaluation III III III III III III IV IV III III
Rule III III III III III III IV IV III III
Query III III III III III III IV IV III III

Notes: Date and date time values must be entered in the correct format or an SQL error will result. NOT, AND, and OR
operators are used to combine two conditions; they are not related to data type.

Blank Allowed
II Allowed by query program, but results may not be meaningful
III Allowed by query program, but will result in SQL error when query is executed.
IV Not allowed

“MATCHES” allows a string of characters to be entered without regard to the case. Equals, “=”, (case sensitive) allows a string
of characters to be entered, but must be in the exact case as stored in the database. The MATCHES comparison operator is
unique to NASIS SQL.

NASIS SQL GUIDE

9
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

In Microsoft® SQL Server™, each column, local variable, expression, and parameter has a related data
type, which is an attribute that specifies the type of data (integer, character, money, and so on) that the
object can hold. SQL Server supplies a set of system data types that define all of the types of data that
can be used with SQL Server. The set of system-supplied data types is shown below.

Character Strings
char Fixed-length non-Unicode character data with a maximum length of 8,000 characters.
varchar Variable-length non-Unicode data with a maximum of 8,000 characters.
text Variable-length non-Unicode data with a maximum length of 2^31 - 1 (2,147,483,647) characters.

Integers
int Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 - 1 (2,147,483,647).
smallint Integer data from -2^15 (-32,768) through 2^15 - 1 (32,767).
tinyint Integer data from 0 through 255
bit (boolean) Integer data with either a 1 or 0 value.

decimal and numeric

decimal Fixed precision and scale numeric data from -10^38 +1 through 10^38 –1.
numeric Functionally equivalent to decimal.

Approximate Numerics
float Floating double precision number data with the following valid values: -1.79E + 308 through -2.23E

- 308, 0 and 2.23E + 308 through 1.79E + 308.
real (smallfloat) Floating single precision number data with the following valid values: -3.40E + 38

through -1.18E - 38, 0 and 1.18E - 38 through 3.40E + 38.

datetime and smalldatetime
datetime Date and time data from January 1, 1753, through December 31, 9999, with an accuracy of

three-hundredths of a second, or 3.33 milliseconds.
smalldatetime Date and time data from January 1, 1900, through June 6, 2079, with an accuracy of one

minute.

Examples of how comparison operators are used in an SQL query:

matches (or LIKE)
WHERE legend.legendsuituse matches "3"

 not equal
mustatus != "additional"

 equal to code value
repdmu = 1

 between two values
muacres between ? and ?
muacres between 10 and 50

greater and less than
muacres >2000
muacress <5 acres

equal to text
legendsuituse = "current wherever mapped"

http://msdn.microsoft.com/en-us/library/aa258242(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258242(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa260619(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa933198(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa933198(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa933198(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa225961(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258832(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258832(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258876(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258876(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258277(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258277(v=sql.80).aspx

NASIS SQL GUIDE

10
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Wildcard characters

There are Wildcard characters that can be used with the operator ‘LIKE’ in the SQL to search for data.
They are used to substitute one or more characters when searching for data. The standard NASIS
wildcards are the ‘?’ question mark for single character and the ‘*’ asterisk for multiple characters.
Other characters allowed include:

Wildcard Description

% A substitute for zero or more characters

_ A substitute for exactly one character

[charlist] Any single character in charlist

[^charlist]
or
[!charlist]

Any single character not in charlist

The bracket ‘[]’ wildcard uses a specific set of characters. It can be a continuous list e.g. [a-d] (will
select any letter between a and d) or [a,c,d] (will select only the three letters identified in the bracket.

The ‘^’ and ‘!’ can be used to negate a set. e.g. [!MO123] or [^TN101] would not be selected in an area
query.

Example Mapunit name

All map units with Menfro in the name %menfro%

All map units with 3 to 8 percent slope in the map unit name %3 to 8%

All map units with flooded in the map unit name %flooded*%

All map units with Menfro and silt loam texture in the map
unit name

%menfro % silt loam%

All map units with a slope range of teens on the high end %1_ slope%

All map units with “men” in the name and one letter before
and after the three letters

men %

All map units that start with CA in the name [CA]%

All map units except the ones that that start with BC in the
map unit name

![BC]%

Avoid using wildcards at the beginning of the search pattern. Search patterns that begin with wildcards
are the slowest to process. Pay careful attention to the placement of the wildcard symbols because the
data returned may not be what was expected.

NASIS SQL GUIDE

11
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Queries

NASIS 6.2 has added enhancements to the Query function. The Query and Report “tables” allows the
user to query for and manage Queries and Reports in a table format.

Another enhancement is how the user decides which objects to download when populating the Local
Database.

The new National Query parameter box
appears. The box includes the
Description and Query panels and in
addition, the box includes a new panel
for ‘Objects to Download’ allowing the
user to selected the various objects to be
downloaded from the national server.

NASIS SQL GUIDE

12
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Queries
The purpose for a NASIS query is to load the local database and to populate the selected set with data
that is filtered to meet the needs of the user. The NASIS “query” requires knowledge of SQL and the
database structure. The NASIS query uses two Keywords: the FROM clause and the WHERE clause. The
SELECT clause is not used since the NASIS query is designed to return the data for all the columns within
the table(s) identified in the FROM clause. Since queries are understood to pull all columns, the SELECT
* (select all columns) has been coded into the Query editor.

Queries are created to retrieve data from the National Database and used again to populate the
Selected Set.
A query used to ‘Run Against the National Database’ requires an Object table. The Object Table is the
Parent table within an object. (e.g. the legend table is the object table for the Legend Object).
Queries designed to ‘Run Against the Local Database’ do not require an Object Table.

A simple query would be to load all instances of a specific map unit name. Opening the ‘Tables and
Columns’ report, identify the columns, table and data types necessary to write the query.

The map unit name field physical name is ‘muname’ and appears in the Mapunit table. The Mapunit
table is the Object table. The muname field is a string data type and is compatible with all comparison
operators. The simple query for use to extract map units from the National database would be:

FROM mapunit
WHERE muname matches “Voca sandy loam, 1 to 3 percent slopes”

The process would be to first select the Queries Explorer panel,

• choose to Open a new Query,
• enter a Query name, then
• select the Query tab and
• enter the SQL statement.

NASIS SQL GUIDE

13
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Load all instances of a named component into the Selected Set

Assuming a simple local database query, to load all instances of a particular component name, then the
first step in writing the query is to review the “Tables and Columns” report:

The component name column (Physical
Name is “compname”) is found in the
Component table and the field is a
variable character (Varchar).

In NASIS, click on the

“Add New Query” icon . The
General tab appears. Populate the
query name and the description. Both
fields are required.

The Query tab is used to write the SQL. The “SELECT *” is understood for all queries, therefore the
query begins with the keyword FROM.

NASIS SQL GUIDE

14
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

The above query is an example of a basic local database query. It includes one table in the FROM clause
and one condition in the WHERE clause. This example will return and populate all component data for
all instances where the component name is equal to the exact letters “Voca”.

The equal sign “=” is a “comparison operator”. The equal sign is used for an exact match in the field
being compared. Any component in which the name is “VOCA” or “voca” or “VoCa” will not be loaded.

This query can be run against the local database in order to populate the selected set. This query will
not work against the National Database because no Object table is identified. The Object table,
‘Datamapunit’, would need to be included in the SQL. Adding multiple tables will be discussed in a later
section.

NASIS SQL GUIDE

15
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Use of the Question mark “?”
In the first query, a specific map unit name was written into the query. To use this query to load a
different map unit name the user must modify the query. The user is interested in writing one query
that can be used multiple times allowing different map unit names to be allowed. This introduces the
concept of the question mark in queries.

The first step is to review the Table and Columns report and, as previously shown, the map unit name
column, ‘muname’, is in the map unit table with a ‘String’ data type.

This query is written with a variable, the question mark ‘?’. The “?” question mark creates a parameter
box. The parameter box is used to identify the map unit name to be queried. When run, the query will
prompt the user to identify the map unit name to be queried:

NASIS SQL GUIDE

16
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Use of “>, <, =” comparison operator
In this example, the user is writing a query to load a component name with a component percentage
greater than or equal to 80 percent. The first step is to review the Tables and Columns report to identify
the columns for use in the query:

Notice the component percentage has three columns: the Low, the RV and the High. The user chooses
the RV value since it is most commonly populated. This field is an Integer data type and according to the
Data type and comparison operator chart, only LIKE and MATCHES cannot be used.

FROM component
WHERE comppct_r >= 80 and compname matches ?

Notice the parameter box appears and prompts the user for a component name. The comparison
operator “greater than or equal to” (>=) can only be viewed in the Query window of the parameter box.
This query is used to search for those component names that the user enters in which the component
percentage is greater than or equal to 80 percent.

NASIS SQL GUIDE

17
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Use of “?”parameter
Continuing, the user requests the component name, component kind and the major components. The
first step is to identify the Tables and Columns to be used. The columns are in the component table and
include a variety of data types:

• Component Name is a “Variable Character”.
• Component Kind is a “Choice” field.
• Major Component Flag is a “Boolean” (1 or 0, Yes or No, True or False, field).

This query will identify the various methods the question mark is used based on the data types. The use
of the question mark for a ‘String’ has been discussed. The use of the ‘?’ on the “Boolean” data type
provides a ‘radio box’ to be either clicked on for ‘Yes’ or cleared for ‘No’. The ‘Choice’ data type field for
component kind provides the drop down choice list for component kind within the parameter box.

String

Boolean

Choice

NASIS SQL GUIDE

18
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Use of “IN ()” and “IN (?)” parameter
Using the same query but with a slight change now provides a different method of presenting the
Component Kind choice list. The question mark for the Component Kind is now enclosed in parentheses
behind the word “IN”. The IN clause has several methods of use.

• Parameter selection based on choice list fields
The first is with a choice list field such as “component kind”.

FROM component
WHERE compname = ? and majcompflag = ? and compkind IN (?)

When used with a choice list field the parameter box will include the choice list for Component Kind
with multiple selection ability:

• Multiple entries in one string
The “IN” command can be used to provide a list of variables to be searched. In this query, the user is
loading several component names using a single query. The syntax used is the IN followed by a space,
then open parentheses, then open quotation followed by the variable followed by the closed quote.
Variables are strung using a comma to separate each variable. The last variable is followed with a closed
parenthesis.

FROM component
WHERE compname IN (‘harney’, ‘farnum’, ‘albion’, ‘crete’) AND mapcompflag = 1 and compkind IN (?)

Choice

NASIS SQL GUIDE

19
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

• User defined multiple entries using the parameter screen
A variation is to include the “?” inside the IN clause parentheses. When used with a ‘String’ data type,
this allows multiple entries, in this case multiple component names, within the parameter box. Each
entry is separated by a comma delimiter.

FROM component
WHERE compname IN (?)
AND mapcompflag = 1

NASIS SQL GUIDE

20
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Use of BETWEEN command
The ‘BETWEEN’ operator allows the user to select a range. What if the user would like a query that
identifies a certain component name and the user wishes to provide a slope range.

Reviewing the Tables and Columns report, the component table and its columns are identified.

The slope_r is an integer data type. The parameters will be specific numbers. The use of the BETWEEN
command allows the user to prompt for two fields to be entered in the parameter box.

FROM component
WHERE compname = ? AND compkind IN (?) AND slope_r BETWEEN ? AND ? “Slope RV High”

The query prompts the user for the Component Name, the various Taxon Kinds and two Slope Range
fields. In addition, notice the use of the words in quotes after each question mark in the SQL. Placing
the words “Slope RV High” after the question mark allows the user to override the default label and
assign a more meaningful label for the specific field. Compare the default label of ‘RV’ to the assigned
label of ‘Slope RV High’.

NASIS SQL GUIDE

21
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 Exercises
Using the NASIS CVIR Language Manual, write the following queries.

1. Load all map units with a given name with a status of “correlated”.
2. Identify a map unit name with the specific Prime Farmland class.
3. Load a component based on its drainage class.
4. Load all components that are mollic albaqualfs.

NASIS SQL GUIDE

22
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Adding additional tables
Loading specific components with specific horizon depths
In most instances the user will wish to load several tables of data into the local database or selected set.
Additional filters (search conditions) may also be necessary to target certain data sets for editing
purposes. Review the “Tables and Columns” report to identify the horizon table and its columns.

Item 10, “hzdept_r” is the top
depth Representative value. This
will be used to identify those
horizons that fall within the users
determined limits.

The query includes two tables in the FROM clause separated by a comma. The clause “WHERE” includes
the search conditions for the component name and uses the previously defined BETWEEN to establish a
range of top depths for the search. The query is completed with the JOIN statement joining the two
tables, component and chorizon. The use of the JOIN statement in the WHERE clause is a legacy of the
NASIS Informix database version.

The Target Table is set to Horizon because horizon depth is the focus of the query. The user then
populates the component name to search and the top and bottom limits of the horizon top depth.

NASIS SQL GUIDE

23
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Target Tables
Simply put, the target table focuses the outcome of a particular query. In this way, the user can control
the query so that it loads only the specific data to be worked on during that edit session. The target
table can greatly restrict or expand the number of records returned by a particular query. To understand
target tables, the user must understand the relationship between objects in the NASIS database. The
data model diagrams help to visualize this relationship.

So, how does a Target Table restrict the records returned by a query? In an edit session, the user only
wishes to work with components that are named “Fayette”. The user would choose a query that loads
components by compname and specify Fayette. Because component name is in the component table,
either datamapunit or component could be selected as the target table. Whether or not only the Fayette
series is loaded depends on the target table choice.

• If datamapunit is selected as the target table, all Data Mapunits that have at least one
Fayette component, in addition to all the DMU other components, are loaded into the
component table.

• If component is selected as the target table, only components named Fayette are loaded.

Using this simple query as an example:
The query has two tables in the FROM clause
that become Target Tables in the parameter
box. Setting the Target Table to “Data
Mapunit”

Provides for a selected set in which all Data Mapunits in which the Fayette component is a member.

NASIS SQL GUIDE

24
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Contrast the previous results with setting the Target Table to Component.

By using Component as the Target Table, the component table is populated with only the “Fayette”
component.

Contrast the results of the same query with different Target Tables.
Setting the Target Table to Data Mapunit requested all Data Mapunits in which Fayette is a component.
What is a Data Mapunit? It is all the components and their data for a given map unit.
Setting the Target Table to Component requested to populate the Component table with only the
Fayette components. The Component table contains only a specific component, therefore if used as the
Target Table then only the specific named component is populated within the Data Mapunit for the
selected set.

NASIS SQL GUIDE

25
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Join Conditions

In this example the user will load all map units and the associated data mapunit for a given Survey Area.
The manuscript reports require the Area, Legend, Mapunit, and Datamapunit objects to be loaded. This
query will require multiple tables and additional search conditions.

Using the database schema, the user identifies the tables needed for this query:

After the tables are identified the user can review the Tables and
Columns report and enter the appropriate information into the
NASIS query:

FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
WHERE areasymbol MATCHES ? and mustatus != ‘additional’ and
repdmu = 1

The required tables are entered in the FROM clause. The clause
“WHERE” has three search conditions. Notice the JOIN conditions
exist in the FROM clause.

The search conditions include the area symbol (using an MATCHES),
the map unit status (using “!=” does not equal) and the
representative datamapunit (using “=” equal) as assigned in the
correlation table.

This query prompts for the Target Tables and Area Symbol.

NASIS SQL GUIDE

26
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

The use of SQL Express 2005 allows for a new method of joining tables and makes the queries and
report more efficient. When the joins are performed in the WHERE clause the query has to make a large
concatenated table of all the tables in the FROM clause then reduce the data with the joins. (You can
put up to 256 tables in one FROM clause. The new syntax will make the first join and then pass the
matching values on to the next join reducing the size of the file.

It’s like going to a restaurant and ordering everything off the menu then restricting only eating one or
two dishes after everything arrives. Using JOINs in the FROM clause selects only the item you want off
the menu right away.

Write:

FROM mapunit
INNER JOIN correlation by default
INNER JOIN datamapunit by default;.

Instead of:
FROM mapunit, correlation, datamapunit
WHERE join mapunit to correlation
and join correlation to datamapunit;.

1. Use the highest level table needed for the query and work down by joining the tables because

they have the smallest number of row unless one of the child tables has a restriction that
reduces the number of records.

2. When using the BY condition you specify a relationship name defined in the NASIS data
dictionary. In most cases, the relationship name is “by default”. If more than one relationship
exists between a pair of tables you must use the correct name. The Info page (Blue circle icon)
for a table in NASIS will list the relationship names.

3. There is an OUTER JOIN explanation in the CVIR Language Manual page 35.

LEFT OUTER JOIN “Name” by default.

Data restrictions can be added in the “FROM” clause using the term ON. When the join conditions begin
with ON, standard SQL syntax applies. You must specify the exact columns to be matched in each of the
tables. Example below:

FROM datamapunit
INNER JOIN component ON datamapunit.dmuiid= component.dmuiidref

 You can also add more conditions beyond just the key columns. Example below:

FROM component
INNER JOIN chorizon ON component.coiid=chorizon.coiidref and
hzname LIKE “%R%” and hzdept_r !=0

Joining data to a restrictive sub query runs quicker because the data set is reduced (sub queries run first
thus reducing the data set size). Join the most restrictive tables first. By joining in the ‘FROM' clause it
restricts the data from the start and thus decreasing the size of what’s being queried.

NASIS SQL GUIDE

27
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercises
 Create a query that

1. Load a map unit by name that ranges from 10,000 to 20,000 acres.
2. Includes the component name column and queries for a specific component.
3. Includes the horizons and queries for a specific depth
4. Identifies those components for a given survey area that area marked as “major component” yet

are less than 15 percent in composition.

NASIS SQL GUIDE

28
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Use of the OR command
Load all major components and all hydric components
The ‘OR’ command is used to search for multiple conditions that may exist. For instance, to search for
all major components and only those minor components that are ‘hydric’. In this example, not all minor
components, but only those hydric minors are searched.

FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN component by default
WHERE areasymbol MATCHES ? AND repdmu = 1 AND
mustatus != ‘additional’ AND
((majcompflag=’yes’) OR (hydricrating = ‘yes’))

Explanation

This is a multi-table query that prompts the user to enter a Survey Symbol. This query includes all the
tables from Area to Component. Notice the FROM clause lists the tables and their JOIN condition.

The ‘WHERE’ clause includes a question mark “?”. This question mark creates a parameter box for
entering the area symbol. The area symbol is using MATCHES to allow the user to enter a survey area
symbol insensitive to case. If there are multiple records in the correlation table, then the ‘repdmu’
condition selects the one record identified as the representative DMU is loaded. This mustatus
condition will load all map units except those with the status labeled as “additional”.

Use of the OR command:

Notice there are two search conditions within a set of parentheses. The two search conditions are
compared using the “OR” command. This search condition states “load all the major components OR
load all the components in which the hydric rating matches “Yes”. By using the OR command in this
search condition, the computer will load all the major components and any hydric components whether
the hydric component is a major or minor component.

NASIS SQL GUIDE

29
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercises

1. Create a query that selects components in which the flooding months contain a frequency of
occasional or frequent.

2. Include in that query those components in which the frequency is also Long or very long

NASIS SQL GUIDE

30
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Arithmetic Operators
Load horizons in which Sand, Silt and Clay totals do not equal 100

After checking the Tables and Columns report, the sand, silt and clay columns are entered into the
query.

FROM chorizon
WHERE sandtotal_r is not null and
 silttotal_r is not null and
 claytotal_r is not null and
 om_r < 36 and
(sandtotal_r+silttotal_r+claytotal_r) NOT BETWEEN 99.995 and 100.005

Line 1: selects the horizon table. The physical name is “chorizon”.
Line 2: begins the WHERE clause
Lines 2-5: verify that the sand, silt and clay fields for this query cannot be NULL fields and OM less than

36 percent.
Line 6: adds the sand, silt, clay RVs to verify they are between the two values.

If these conditions are met, then the query will load those horizons that meet these search criteria.
Notice, there are no prompts for a parameter box. This query will load all horizons in the local database
that meet these conditions. (No ‘object table’ is used in this query, therefore it can not be run against
the national database)

Exercises

1. Create a query that will sum the sand fractions and compare the result to the sand total for a
given survey area.

2. Create a query that compares the no. 200 sieve to the properties populated for particle size
3. Create a query that identifies those components with a clay texture that are less than 35

percent clay.

NASIS SQL GUIDE

31
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Outer Joins

Load all Components for a survey area based on component percent

When using multiple tables, the query assumes a one to one relationship between the two tables.
There is a row in the parent table (Data Mapunit) that is linked directly to the child table (Component).
If a data mapunit has an empty component table then the 1 to 1 match fails and that data mapunit does
not meet the criteria.

FROM areatype
INNER JOIN area by default
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN component by default
WHERE areaname MATCHES ? AND comppct_r > ? ‘Component RV%’ AND mustatus =
‘correlated’

So, what if a Data Mapunit has an empty Component table? Should that information be loaded as part
of the selected set? Most of the time the answer is Yes. This is over come by the use of the OUTER join.

FROM areatype
INNER JOIN area by default
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
LEFT OUTER JOIN component by default
WHERE areaname MATCHES ? AND comppct_r > ? ‘Component RV%’ AND mustatus =
‘correlated’

With the query modified, it will now load all Data Mapunits associated with the map unit even if there is
nothing populated in the Component table. The LEFT OUTER JOIN stipulates that all data mapunits are
to be loaded regardless if there is data in the component table.

Once an outer join is used in a series of JOIN statements, the OUTER JOIN must be used on all joins
below the first OUTER JOIN.

Exercises

 Create a query to:

1. Load component surface fragments for a user defined official legend.
2. Load all sites, pedons and transects for a given survey area using the User Site ID.

NASIS SQL GUIDE

32
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Types of joins

Tables can be joined:
• by the relationship, many times this uses the term “default”
• by a defined relationship e.g. “mlra_sso” or “nonmlra_ssa” for area type joins
• on a specific relationship e.g. primary key:foreign key
• on any two fields with corresponding values

The relationship name is identified in the related parent table in the relationship Name column found
with the blue i icon (view information) in NASIS.

The types of joins are:

• INNER JOIN
o only matching values from both tables
o the most common type of join
o Allows you to join multiple tables in one query, but it requires specific condition for it to

work.
o You must ensure that the join statement has two tables with at least one common

overlapping field.
o An INNER JOIN is the default join type. If an inner join is omitted from the join clause of

a query, the NASIS SQL server will assume it to be an inner join
• OUTER JOINS
If you understand inner joins, understanding OUTER JOINS is an easy progression. They both look for
and display every match they find between two tables. Both joins require that you specify the
matching field(s) in the ON clause. Outer joins show the records that inner joins omit.

o left outer join
 all values from the left (table left of the word join) table and only the matching

values in the right (table right of the word join) table
o right outer join

 all values from the right table and only the matching values from the left table
o full outer join

 All values from both tables regardless of matching values
 Fields will have null values that lack a matching row

Join Examples
1. The query below retrieves values that match in both tables. If a legend is not linked to an area it

will not be retrieved.
FROM area
INNER JOIN legend by default

2. The query below retrieves all values in the left table (correlation table) and only matching in

right table (data map unit table). This query will get all map units and only data map units that
are linked to the correlation table. Any data map units that are not linked to a map unit will not
be retrieved.

FROM mapunit
INNER JOIN correlation
LEFT OUTER JOIN datamapunit by default

NASIS SQL GUIDE

33
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

3. This query retrieves all values in right table (data map unit table) and only matching in left table

(map unit table). This will get you all datamapunit and only mapunit where the mapunit are
linked.

FROM mapunit
INNER JOIN correlation
RIGHT OUTER JOIN datamapunit by default

4. This query retrieves all values in both tables. This will get all map units and data map units even

if they are not linked
FROM mapunit
INNER JOIN correlation
FULL OUTER JOIN datamapunit by default

5. This query joins on a specific primary key (legend.areiidref) and foreign key field (area.areaiid)

FROM area
INNER JOIN legend ON legend.areiidref=area.areaiid

6. This query joins a codename comparison (project.stateresponsible) and alias the table name (st)

FROM legend
INNER JOIN area st on CODENAME(project.stateresponsible)=Arkansas

7. This query performs a double joins on two values (atdbiidref and areatypename) with alias for

areatype
FROM AREA
INNER JOIN areatype stt by default and stt.atdbiidref=1
and stt.areatypename = "State or Territory"

8. This query creates a ‘parameter’ for state code and matches it to part of the area symbol.

Parameter statement is discussed later:
PARAMETER areasym ELEMENT area.areasymbol PROMPT "State Symbol".
SELECT LEFT((areasymbol), 2) imatches areasym
FROM legend
INNER JOIN area on areasymbol on areasymbol=areasym

9. This query creates a double self join (dmuiidref=c2.dmuiidref and c1.coiid!=c2.coiid). This will

find duplicate components with the same name Captina in the same data map unit
FROM component c1
INNER JOIN component c2 on c1.dmuiidref=c2.dmuiidref and c1.coiid!=c2.coiid
WHERE compname in (“Captina”)

NASIS SQL GUIDE

34
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Identifying Specific Joins

There will be instances where the JOIN between two tables must have a declared join column. The need
for the “BY” is to determine the relationship (foreign keys) between the two tables.

The View Information is a tool used to identify the relationships between the related parent tables. The
join between the Project and the Area could be on either the nonmlra_sso or the mlra_sso, therefore a
BY is needed to identify the specific relationship.

NASIS SQL GUIDE

35
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Subqueries using the EXISTS operator
Subquery is a query in a query. A subquery is usually added in the WHERE Clause of the sql statement.
Most of the time, a subquery is used when you know how to search for a value using a SELECT
statement, but do not know the exact value. Subqueries are an alternate way of returning data from
multiple tables. A subquery is used to further restrict the results of the main query. The most common
use for subqueries is filtering data in the WHERE clause of a SQL command. A subquery is set within the
query using parentheses. Four special operators (EXISTS, IN, ALL, ANY), as well as the conventional
operators like =, <, >, >=, <= are used to connect the containing command and the subquery.

The EXISTS operator is testing for existence of data, it either does exist (TRUE) or does not exist (FALSE).
Therefore only one column or the asterisk (*) is necessary in the SELECT statement. What if a query is
written to load all components that have more than one texture in the surface horizon? In this example,
the query is written to prompt for a survey area and it selects the surface horizon. The subquery begins
with EXISTS and tests the existence of more than one record ID (chiidref) in the horizon texture group
table for the surface layer. Notice the use of the chorizon table which links the subquery to the query.

FROM areatype
INNER JOIN area by default
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN component by default
INNER JOIN chorizon by default
WHERE areasymbol MATCHES ?
AND hzdept_r = 0
AND EXISTS (SELECT chorizon_iid_ref FROM chtexturegrp
 WHERE JOIN chorizon TO chtexturegrp
 GROUP BY chorizon_iid_ref
 HAVING COUNT(*) > 1)

Exercises
Create a query to load components by survey area that have multiple surface textures

NASIS SQL GUIDE

36
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Subqueries using the NOT EXISTS operator
Contrary to EXISTS, the NOT EXISTS is identifying the non existence of data. What if it was necessary to
identify those components in which no horizon information is entered? The outer join is helpful,
however another method is available. Using a subquery can be helpful to identify a child table with no
open rows. In this example the NOT EXISTS is used. The subquery is in parentheses and it states to
select everything for the horizon table and joins the component and the horizon table. The NOT EXISTS
is a negative or reversal. If nothing exists, a table with no data, then it returns a TRUE statement and
that data is loaded into the selected set.

FROM component
INNER JOIN chorizon by default
WHERE NOT EXISTS (SELECT chiid FROM chorizon WHERE JOIN component to chorizon)

Exercises

Create a query that loads all the components in a survey area in which the Parent Material table is not
populated.

NASIS SQL GUIDE

37
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Subqueries using the = operator
What if it was necessary to identify all the component(s) with the maximum percentage in a survey area,
or maximum in a datamapunit? The subquery using the = operator will return one result. The subquery,
which extracts the maximum component percentage, is set apart using parentheses, and uses that value
for comppct_r. What is returned for that value for use in the main query depends on whether the
subquery is ‘correlated’ to the main query. This introduces the concept of a correlated versus
uncorrelated sub query.

Correlated subquery
A correlated subquery has a more complex method of execution than single- and multiple-row
subqueries and is potentially much more powerful. If a subquery references columns in the parent
query, then its result will be dependent on the parent query (correlated). The SQL differences are subtle
however notice the subquery FROM clause and compare the two versions. In the correlated subquery,
the subquery and main query are linked using the WHERE clause that links the datamapunit in the
subquery to the datamapunit in the main query.

FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN component by default
WHERE areasymbol matches ‘KS155’
AND repdmu = 1 and mustatus = ‘correlated’
AND comppct_r = (SELECT max(comppct_r)

FROM component WHERE JOIN component to datamapunit)
In the correlated subquery, the component with the highest component percentage in each
datamapunit is presented as the value to be used in the main query.

Uncorrelated subquery
This subquery will load the component that contains that maximum percentage, but from where? Only
17 components contain the 100 percent found to be the highest comppct_r value in the survey area.

FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN component by default
WHERE areasymbol matches ‘KS155’
AND repdmu = 1 and mustatus = ‘correlated’
AND comppct_r = (SELECT max(comppct_r) FROM
component INNER JOIN datamapunit by default)

Since the WHERE clause does not exist in the subquery, the extracted comppct_r results come from the
query of the entire component table. A maximum comppct_r value of 100 percent is returned and
presented as the value to be used in the main query.

NASIS SQL GUIDE

38
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Subqueries using the IN operator

The IN operator requires that the subquery returns one value. In this example the IN operator is
identifying the maximum bottom depth of the soil – the use of the term MAX on the horizon bottom
depth column. In addition, this query contains a second subquery to identify those soils in which the
parent material is “till”. This is an example of using multiple subqueries to load data.

FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN component by default
INNER JOIN chorizon by default
WHERE areasymbol matches ?
AND repdmu = 1 and mustatus = 'correlated'
AND ANY(SELECT * FROM copmgrp WHERE JOIN component to copmgrp and pmgroupname
matches '*till*' and rvindicator = 1)
AND hzdepb_r IN (SELECT MAX(hzdepb_r) FROM chorizon WHERE JOIN component to
chorizon)

The ANY keyword denotes that the search condition is TRUE if the comparison is TRUE for at least one of
the values that is returned. If the subquery returns no value, the search condition is FALSE. This
keyword is similar to the IN keyword.

Exercises

1. Load components for a survey where the R horizon depths do not match the Restriction table
depths

NASIS SQL GUIDE

39
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

NASIS Reports

NASIS SQL GUIDE

40
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Reports can be loaded into the Report “table” allowing the user to query for and manage reports in a
table format.

Reports can be ‘Run Against the Local Database’, ‘Run Against the National Database’ or “Run Offline
Against the National Database”. Using the ‘offline’ option allows the user to run lengthy reports off the

server instead of the local machine. The advantage is the
process will release the NASIS screen allowing the user to
continue working in NASIS while the report is running on
the server. When completed, the server will send an email
to the user with a link to retrieve the completed report.
The metadata reports and CVIR guide are necessary
references for report writing. Find these materials on the
NASIS web site and keep them available.

NASIS Reports contain 3 major parts:

• QUERY
• DATA MANIPULATION
• OUTPUT

NASIS SQL GUIDE

41
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

QUERY ###
EXEC SQL
select areaname, legenddesc, liid, lmapunit.seqnum, musym, muname
from legend, lmapunit, mapunit, outer area
where join area to legend and join legend to lmapunit and join lmapunit to mapunit;
SORT BY liid, lmapunit.seqnum, musym SYM.

DATA MANIPULATION ###

DEFINE dt TODAY.
DEFINE legend_name areaname || ": " || legenddesc.
DEFINE mu_name muname.

OUTPUT ###

PITCH HORIZONTAL 15 VERTICAL 8. PAGE LENGTH 80.
TEMPLATE basic SEPARATOR "" AT LEFT FIELD WIDTH 10, FIELD WIDTH 90, "".
TEMPLATE head SEPARATOR "" AT LEFT FIELD WIDTH 10, FIELD WIDTH 25,"".

HEADER INITIAL
 AT LEFT areaname WIDTH 75;
 AT 80 "Print date: ", dt WIDTH 10.
 AT LEFT "Soil Map Legend".
END HEADER.

HEADER
 AT LEFT "Soil Map Legend".
END HEADER.

SECTION main
 HEADING
 SKIP 1 LINE.
 USING head
 "Map\nsymbol" ALIGN CENTER, "Soil name" ALIGN RIGHT.
 USING basic.
 DATA
 USING basic
 musym INDENT 1,
 mu_name INDENT -1.
END SECTION.

SECTION WHEN LAST OF liid
 DATA
 USING basic.
 NEW PAGE.
END SECTION.

NASIS SQL GUIDE

42
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

The ‘Query’ section uses the SQL KEYWORDS

SELECT columns
FROM tables
WHERE conditions are met

The query can also contain optional sections, such as the ‘sort’, ‘aggregation’ and some ‘data
manipulation’.

The ‘Data Manipulation’ section includes several tools used to transform the data ‘output’. These
include the following statements:

CODELABEL/CODENAME,
DEFINE,
ASSIGN,
DERIVE,
INTERPRET, and
PARAMETER.

The ‘Output’ section includes the use of ‘text’ or ‘html’ formatting commands. These include the
following commands:

INCLUDE/ACCEPT,
TEMPLATE,
PAGE,
MARGIN,
PITCH,
HEADER/FOOTER,
SECTION,
ELEMENT.

Explanations of these statements will be discussed in this document, but detailed information is found in
the CVIR guide.

NASIS SQL GUIDE

43
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Query
A new NASIS report is created by choosing ‘Add New Report’ from the Reports Explorer menu or
toolbar. A report name and report format is required field (bold and italic). The report format choice list
includes: HTML, Text, or XML.

SINGLE TABLE QUERY
Report Script

A NASIS report can be created using the basic assigned report format. Reports use all SQL KEYWORDS:
SELECT, FROM, and WHERE. The report script begins with the statement: EXEC SQL. This statement
informs the NASIS software of an upcoming SQL statement. NASIS has created unique SQL terminology.

 EXEC SQL
 SELECT nationalmusym, muname
 FROM mapunit;.

The NASIS SQL begins with EXEC SQL and ends
with both the semicolon “;” and “.” period. The
SELECT statement identifies the columns to be
extracted FROM the identified tables and the
WHERE sets the conditions. The report to the
right is an example of the ‘Text’ report format.

This simple SQL, above, will pull two columns from
the mapunit table: nationalmusym and the map
unit name. The column labels and column widths
are from the data dictionary. This information is found in the ‘Table and Column’ report found on the
NASIS metadata web site or the View Information inside NASIS.

CVIR References

EXEC SQL statement
Table Structure Report

NASIS SQL GUIDE

44
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

MULTIPLE TABLE QUERY
The SQL can be expanded to include more columns from additional tables. This example contrasts the
use of the ‘html’ and ‘text’ report format.

EXEC SQL
SELECT areasymbol, musym, muname
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default;
SORT BY musym SYM.

The report script, above, demonstrates a simple
join between tables. Note that all tables are
required in the FROM clause to connect all tables
between the first to last tables. The areasymbol
comes from the area table. The legend table is
required because it is in the join path to the
lmapunit table, where the musym is stored. The
mapunit table stores the muname. The JOIN
syntax is the same as in NASIS queries. The column physical name and the report column ‘label’ are
found in the ‘Tables and Columns’ report.

CVIR References

EXEC SQL statement p. 35
Sort Specifications p. 39
Data Structure Diagrams

NASIS SQL GUIDE

45
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercise 1. Creating a Default Format Report

Create a default html format report that identifies the national mapunit symbol, mapunit name, and
corresponding component names for mapunits for the legend in your selected set. Sort the report by
mapunit symbol. Your report should look similar to the sample given here. Take a close look at your
report; how can it be improved?

NASIS SQL GUIDE

46
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

JOINS
Exercise 1 was designed to create a ‘legend’ report identifying the national mapunit symbol, mapunit
name, and component names. Some mapunits could be omitted because they are not linked to a data
mapunit. To ensure that all mapunits appear the OUTER JOIN is needed to specify the return of all map
units. The representative datamapunit column is added to verify that only the representative DMU is
returned. The SORT on the component percentage column is included to sort the components by
descending component percentage. In this script, the OUTER specification will return all mapunits even
if no rows are returned from the join between the correlation table and the datamapunit table.

EXEC SQL
SELECT areasymbol, musym, muname, compname, comppct_r
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
WHERE repdmu = 1;
SORT BY musym SYM, comppct_r desc.

CVIR References

EXEC SQL statement p. 35
Sort Specifications p. 39
Table Structure Report

Discussion:
Condition,
OUTER join,
Boolean

Mapunit DMU

NASIS SQL GUIDE

47
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercise 2. OUTER Join for Component Restrictions

Using what has been learned, create a component restriction report that includes mapunit symbol,
mapunit name, all components, and component restriction, sorted by mapunit symbol and component
percent. Refer to the diagrams, ‘tables and columns’ report and ‘data type and comparison’ chart.

What tables are needed?
What columns are necessary?
What comparison operators and conditions are needed?

In this report the restriction kind is ‘uncoded’ returning the result as populated in the database however
all components appear whether there is a restriction or not.
Run this same report using INNER JOINS to compare the result:

NASIS SQL GUIDE

48
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

CODELABEL and CODENAME
In Exercise 2 the restriction kind is returned ‘uncoded’. The data can be converted to the characters
identified in the data dictionary using the CODENAME and CODELABEL. Explanation can be found on
pages 22-23 in the CVIR guide but on page 36, it explains its use in the SELECT command. The SELECT
command can be modified in exercise 2 to code the restriction kind, as follows:

EXEC SQL
SELECT areasymbol, musym, muname, compname, comppct_r, CODELABEL(reskind) reskind
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
LEFT OUTER JOIN corestrictions by default
WHERE repdmu = 1;
SORT BY musym SYM, comppct_r desc.

The use of CODELABEL converts the
number to the choice list description
with the first letter UPPER CASE. The
use of CODENAME is similar, but the
name is all lower case. Notice the
use requires the CODELABEL to be
followed by the field in parentheses
and renaming the field. The
renaming of the field is referred to as
an ‘alias’ and in this case the same
name was used (reskind). The ‘alias’
can be any word; it could have been
set to
 ‘CODELABEL(reskind) restrictions‘

NASIS SQL GUIDE

49
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

AGGREGATION
The aggregation of the Query can use either the ‘Group by’ function or the Aggregation clause.

GROUP BY

This SQL uses the GROUP BY statement to aggregate data based on a column. In this Query, the
aggregation finds all distinct instances of area symbols and mapunit text kinds then counts each
occurrence. The Group By is used by sql to "aggregate" the data before the "aggregation" command
‘count’. The count(*) is an SQL command that tells the query to tally up as it progresses using the alias
named ‘rowcount’ (it could have been named anything). The Group By is necessary in the SQL (a new
group) and count(*) tells how many are found for each group. The "sum" is not needed in a COLUMN
field because sql has already completed the sum. This query uses the REAL command to return to the
local database to retrieve data. In the example below, the map unit text kind records are grouped and
counted:

EXEC SQL
SELECT areasymbol, CODENAME(mapunittextkind) AS text, count(*) as rowcount
FROM REAL area
INNER JOIN REAL legend by default
INNER JOIN REAL lmapunit by default
INNER JOIN REAL mapunit by default
INNER JOIN real mutext by default
WHERE areasymbol matches "KS155"
GROUP BY areasymbol, mapunittextkind;.

Without the use of CODENAME (text report)

With the use of CODENAME (html report)

There are 3 different choices for text ‘Kinds’ used in this survey area. There are 266 entries using ‘Kind
1’ (nontechnical descriptions). The value is deciphered using Choice ID in the Domains report:

There are 266 nontechnical descriptions, 225
correlation notes, and 108 miscellaneous notes.

The GROUP BY and ORDER BY clauses do not allow
column numbers or aliases as they did in Informix. You
have to use a column name or expression. For example,
GROUP BY areasymbol instead of GROUP BY 1 where ‘1’
is the first column in the SELECT clause.

NASIS SQL GUIDE

50
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercise 3. Use of Group By

Using the SQL from Exercise 2, modify the query to identify the number and kinds of restrictions found
in the selected set. The resulting report should look similar to this report:

EXEC SQL
SELECT areasymbol, CODELABEL(reskind) reskind, count(*) as rowcount
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
LEFT OUTER JOIN corestrictions by default
WHERE repdmu = 1
GROUP BY areasymbol, reskind;.

NASIS SQL GUIDE

51
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 AGGREGATE

The use of the AGGREGATE function can eliminate duplication of many of the columns of data found in
Exercise 2. Aggregation can be used to clean the report by removing the duplication of data in specified
columns. To explain the AGGREGATE function, first review a set of data without aggregation. The
following query produces this report:
EXEC SQL
SELECT areasymbol, musym, muname,
compname, comppct_r,
CODELABEL(reskind) reskind
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
LEFT OUTER JOIN corestrictions by
default
WHERE repdmu = 1;
SORT BY musym SYM, comppct_r desc.

Notice the repetition of the area symbol, mapunit symbols, map unit names, etc. Each row has repeated
information in this report.

Adding AGGREGATE to the SQL will remove the duplication of data in specific rows and make the data
easier to read:
EXEC SQL
SELECT areasymbol, musym, muname, compname, comppct_r, CODELABEL(reskind) reskind
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
LEFT OUTER JOIN corestrictions by
default
WHERE repdmu = 1;
SORT BY musym SYM, comppct_r desc
AGGREGATE ROWS BY areasymbol, musym, muname COLUMN compname NONE, comppct_r NONE.

The aggregate specification is shown in bold. In this script, rows that have the same areasymbol,
musym, and muname will be grouped together to form a single iteration for the report. Typically,
aggregation should be applied to internal ‘key’ fields (liid, lmapunitiid, muiid, coiid, etc). The column
aggregation “NONE” is specified allowing duplicates of the component name (see 2266 Aquolls). A
default aggregation of UNIQUE could be applied to remove duplicate data from specified columns.

NASIS SQL GUIDE

52
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

CVIR References

EXEC SQL statement p. 35
Sort Specifications p. 39
Aggregation Specifications p. 40

Exercise AGGREGATION of columns

After reading the information in CVIR on page 40, use the Aggregate clause to identify the climatic
values (elev_l MIN, elev_h MAX, map_l MIN, map_h MAX, airtempa_l MIN, airtempa_h MAX, ffd_l MIN,
ffd_h MAX.) by map unit symbols.

EXEC SQL
SELECT areasymbol, musym, elev_l, elev_h, map_l, map_h, airtempa_l, airtempa_h, ffd_l, ffd_h
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
SORT BY areasymbol, musym
AGGREGATE ROWS BY areasymbol, musym COLUMN elev_l MIN, elev_h MAX, map_l MIN, map_h MAX,
airtempa_l MIN, airtempa_h MAX, ffd_l MIN, ffd_h MAX.

Notice the column headers use the default column label as found in the Tables and Columns report.

NASIS SQL GUIDE

53
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Aggregation Exercise
Use what you learned in aggregating data from previous examples to create a report sums the map unit
acres for farmland classifications within a given survey area. The area symbol, “class”, and summed map
unit acres are the columns.

Sample Report Output

Your report parameter should look similar to the sample given here.

NASIS SQL GUIDE

54
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

EXEC SQL
SELECT areasymbol, CODELABEL(farmlndcl) farmlndcl, muacres
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default;
SORT BY farmlndcl
AGGREGATE ROWS BY areasymbol, farmlndcl COLUMN muacres SUM.

NASIS SQL GUIDE

55
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ARITHMETRIC FUNCTIONS
The SELECT clause has the ability to use arithmetic functions (+, -, *, /) to validate or modify the data.
Typical algebraic rules must be followed.

An example is the calculation of component acres using the map unit acres and the component
percentage. Notice that the compacres field is created.

EXEC SQL
SELECT areasymbol, musym, muname, compname,
muacres, comppct_r, ((muacres*comppct_r)/100) as compacres
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
WHERE repdmu = 1;
SORT BY musym SYM, comppct_r desc.

Notice the ‘RV’ column is the default column label. Using arithmetic functions the column label can be
converted with an alias:

EXEC SQL
SELECT areasymbol, musym, muname, compname, muacres, comppct_r/1 as comppct_r,
((muacres*comppct_r)/100) as compacres
FROM area

By dividing the comppct_r by 1, it does not change the value, however it does allow for the alias column
label to be assigned.

NASIS SQL GUIDE

56
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Another example is using the aggregation from the previous exercise.

EXEC SQL
SELECT areasymbol, musym, elev_l*1 as Elev_min_Low, elev_h*1 as Elev_max_High, map_l *1
as MAP_min_L, map_l * 1 as MAP_max_h, airtempa_l*1 as MAAT_min_l, airtempa_h * 1 as
MAAT_max_h, ffd_l*1 as FFD_min_L, ffd_h*1 as FFD_max_h
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default;
SORT BY areasymbol, musym
AGGREGATE ROWS BY areasymbol, musym COLUMN Elev_min_Low MIN, Elev_max_High
MAX, MAP_min_L MIN, MAP_max_h MAX,
MAAT_min_l MIN, MAAT_max_h MAX, FFD_min_L MIN, FFD_max_h MAX.

From this:

To this:

Notice that using the arithmetic functions, the column labels can be over ridden to create more
meaningful column headers.

NASIS SQL GUIDE

57
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

The arithmetic function “+” can also be used in a SQL to concatenate string values. For example, the
component name and local phase can be concatenated into a single field using the plus. In addition, the
term ‘case’ is used to validate the NULL possibility of the local phase field. Using the simple IF,
THEN:ELSE statement the test for NULL local phase can be used first to identify the presence of a local
phase term and if it is null then present the component name else put the two together with a comma
and space in between:

EXEC SQL
SELECT areasymbol, musym, muname,
case when localphase is null then compname else compname + ', ' + localphase end as
compphase, muacres, comppct_r, ((muacres*comppct_r)/100) as compacres
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
LEFT OUTER JOIN correlation by default
LEFT OUTER JOIN datamapunit by default
LEFT OUTER JOIN component by default
WHERE repdmu = 1;
SORT BY musym SYM, comppct_r desc.

Notice the ‘compphase’ field contains a concatenation of the component and the local phase for the
Orthents components.

NASIS SQL GUIDE

58
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

REAL TABLES
The use of the term REAL in front of the table name will link the table in the local database instead of
the selected set. When the query is run against the national database the term REAL is ignored. “REAL”
needs to be on all the tables that are in your local database by default (e.g. area, areatype, geomorphic
tables, etc.).

Report Script

EXEC SQL
SELECT areasymbol, mapunittextkind, 1 as rowcount
FROM REAL area
INNER JOIN REAL legend by default
INNER JOIN REAL lmapunit by default
INNER JOIN REAL mapunit by default
INNER JOIN REAL mutext by default
WHERE areasymbol matches "KS155";
SORT BY areasymbol sym, mapunittextkind
AGGREGATE ROWS mapunittextkind COLUMN rowcount sum.

NASIS SQL GUIDE

59
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

SUBQuery
This report introduces the use of a subquery and how it can be used to specify results based on a second
set of criteria. The values returned for the unified classification is uncoded, and
CODELABEL/CODENAME could be used to code the result. In this example the report is used to verify
the list of unified classifications for each horizon that is specifically a USDA texture of ‘FSL or VFSL’.

EXEC SQL
SELECT compname, hzname, hzdept_r, hzdepb_r, unifiedcl
FROM component
INNER JOIN chorizon by default
INNER JOIN chunified by default
WHERE chiid IN (select chiidref from chtexturegrp where texture in ("FSL", "VFSL"));
sort by compname, hzdept_r
AGGREGATE rows compname, hzdept_r column unifiedcl list.

Report Script – alternative EXISTS

EXEC SQL
SELECT compname, hzname, hzdept_r, hzdepb_r, unifiedcl
FROM component
INNER JOIN chorizon by default
INNER JOIN chunified by default
WHERE EXISTS (select * from chtexturegrp where join chorizon to chtexturegrp and texture in
("FSL", "VFSL"));
SORT by compname, hzdept_r
AGGREGATE rows by compname, hzdept_r.

NASIS SQL GUIDE

60
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

JOINING MULTIPLE SQL STATEMENTS
Multiple SQL statements can be used in a report. Each SQL can be used to extract data for specific uses
in the report. A few rules for multiple SQL reports:

1. The report must use the ‘BASE TABLE’ command. This command identifies the one table
that links all SQL statements.

2. Parameterized queries can be used in place of the BASE TABLE.
This report introduces the use of multiple queries used to compare UNIFIED and USDA textures data by
horizon. The first query combines unified classes into a list using the aggregate command. Note the
use of LIST to create a comma delimited list of the unified and the USDA textures. Note the use of
codename in the SELECT clause to decode UNIFIED instead of using a DEFINE statement which would
come after the list command, therefore, not working as part of the aggregation to create a list. The
second query combines the USDA texture classes into a list, using the AGGREGATE and list, for the
COLUMN. Notice that the use of AGGREGATION ROWS BY is limited to the first query, subsequent SQL
statements can only use AGGREGATE COLUMNS.

BASE TABLE chorizon.

EXEC SQL
SELECT compname, slope_r, hzname, hzdept_r, hzdepb_r, claytotal_r, codename(unifiedcl)
unifiedcl
FROM component
INNER JOIN chorizon by default
INNER JOIN chunified by default;
SORT by compname, hzdept_r
AGGREGATE rows compname, hzdept_r column unifiedcl list.

Second query combines texture classes into a list.

EXEC SQL
SELECT texture
FROM chorizon
INNER JOIN chtexturegrp by default;
AGGREGATE column texture list.

NASIS SQL GUIDE

61
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PARAMETERIZED QUERY

This report introduces the use of multiple queries used to compare results. This example uses
parameterized queries to link to differing sets of data for comparison. A Parametric query is a special
instance of joining two SQL statements using the “IN” or “=” operator. Using = is always faster than IN.
Use IN if there is a possibility of multiple values for muiid. Assuming muiid is the output of your initial
query, it would have to be aggregated in such a way that multiple values of muiid could occur. This will
join one field in a secondary query to a corresponding value in the main query.

This report presents the High Water Table for a component along with the Restriction and its depth.
Two different database paths require special treatment. A BASE TABLE is not set in a parameterized
query.

Report Script using “=” (single result)

First query finds the depth to first restriction for each component.
Outer join is used in case a component has no restrictive features.

EXEC SQL
SELECT dmudesc, dmuiid, compname, slope_r, reskind, resdept_r
FROM datamapunit
INNER JOIN component by default
LEFT OUTER JOIN corestrictions by default;
sort by dmudesc, compname, resdept_r
ARREGATE ROWS dmudesc, compname COLUMN reskind first, resdept_r first.

Second query finds the highest water table for the component.

EXEC SQL
SELECT soimoistdept_r
FROM component
INNER JOIN comonth by default

NASIS SQL GUIDE

62
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

INNER JOIN cosoilmoist by default
WHERE component.dmuiidref = $dmuiid and soimoiststat="wet";
AGGREGATE column soimoistdept_r min.

Report Script using “IN” (possible multiple results)

BASE TABLE mapunit.
EXEC SQL
SELECT liid, lmapunitiid, musym, muiid, muname, muacres, areasymbol, group_name
FROM areatype
INNER JOIN area by default
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
INNER JOIN nasis_group by default
WHERE
 areatypename imatches "non-mlra soil survey area" and
 mustatus = "correlated" AND legendsuituse = "current wherever mapped";
SORT BY muname, group_name, lmapunitiid, muacres.

EXEC SQL
SELECT muname mname, nationalmusym, dmuiid
FROM mapunit
INNER JOIN correlation by default
INNER JOIN datamapunit by default
WHERE repdmu = 1 and
muiid in ($muiid);
SORT BY mname, dmuiid.

Joining sub-query tables to main query

FROM area
WHERE areaiid=(select areaiidref FROM legend WHERE JOIN legend to area)

Join two sets of data from different sub-queries

Use the “UNION ALL” Between queries. This will select the mapunit symbols from the two different
legends and make them into one list.

EXEC SQL
SELECT musym
From area
Where areasymbol IN (MO207);.

UNION ALL

SELECT musym
From area
Where areasymbol IN (MO103);.

NASIS SQL GUIDE

63
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Complex join to subquery in the “From” clause

SELECT DISTINCT musym, compname
FROM area
INNER JOIN legend l ON l.areasymbol = area.areasymbol
INNER JOIN lmapunit lmu ON lmu.liidref = l.liid
INNER JOIN mapunit mu ON mu.muiid=lmu.muiidref
INNER JOIN correlation corr by default
INNER JOIN datamapunit by default
INNER JOIN component co ON co.dmuiidref = corr.dmuiidref
INNER JOIN (SELECT sandtotal_r, silttotal_r, claytotal_r , texture FROM chorizon ch

 LEFT OUTER JOIN chtexturegrp tex ON ch.chiid = tex.chiidref)

Query Exercises

Create a basic html report that provides the list of all components within the selected set presenting the
area symbol, mapunit symbol, map unit name, component name and parent material group. The
reports should appear similar to this example:

NASIS SQL GUIDE

64
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Data Manipulation
The Data Manipulation phase of the report allows for data pulled from the SQL to be transformed to
another value or class. The Data Manipulation section requires the use of the OUTPUT section in a
report.

DEFINE
CVIR page 22 contains a full explanation. The DEFINE statement is the basic method of data
manipulation. The DEFINE statement can be used to uncode coded data elements, concatenate two
variables, transform NULL values, convert variables using arithmetic values, provide classes and
manipulate decimals. Examples include:

CODENAME and CODELABEL

These terms can also be used in the DEFINE statements to return the code name for the coded value
from the data dictionary. CODENAME codes using lower case, whereas CODELABEL returns mixed case
codes.

DEFINE textkind CODENAME(mapunittextkind).
DEFINE drncl CODELABEL(drainagecl).

CONCATENATING OF FIELDS

The use of the double pipe “||” allows for concatenating of fields such as the Irrigated capability class
and subclass.

DEFINE ilc CODELABEL(irrcapcl) || CODELABEL(irrcapscl).
DEFINE nilc CODELABEL(nirrcapcl) || CODELABEL(nirrcapscl).

Concatenating two fields with a space in between:
DEFINE symname musym || "--" || muname.

Or concatenate a text string with a field:
DEFINE compsim "Description of " || compname.

ARITHMETRIC FUNCTIONS

Arithmetic functions can be used to transform data fields, such as converting metric to English:
DEFINE mat_l (airtempa_l*9/5)+32.

Or identifying the thickness of of a horizon by a property:
DEFINE rv (hzdepb_r - hzdept_r) * om_r.

NULL TRANSFORMATION

Some data fields can be NULL within the database and a decision must be made to transform the data
for use. The DEFINE uses the IF, THEN, ELSE to test for NULL values. (If the unified field is null, then
assign ‘NULL VALUE’ else code label the unified class.

DEFINE un1 ISNULL(unifiedcl) ? "NULL VALUE": CODELABEL(unifiedcl).

NASIS SQL GUIDE

65
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

SPRINTF commands

The C programming ‘sprintf’ commands (%s for character, %f for numeric) can be used to transform data
(CVIR page 26). For instance, using the sprintf to assign the clay range and assign the number of floating
fields each element will be assigned – 3 places for claytotal_l and 2 places for claytotal_h.

DEFINE clay ISNULL(claytotal_l) OR

ISNULL(claytotal_h) ? " ---" :
sprintf("%3.f-%-2.f",claytotal_l,claytotal_h).

Or assigning a fixed number of decimals as in awc will be 4 places with 2 decimal places:
DEFINE awc ISNULL(awc_l) OR ISNULL(awc_h) ? " ---" :sprintf("%4.2f-%-4.2f",awc_l,awc_h).

Or assigning a value to a character field to test for a null texture field and if not null then define the
character field:
DEFINE tex2 ISNULL(tex) ? "-" : sprintf("%s",tex).

ASSIGN
The ASSIGN statement recalculates the value of a variable that was defined in a previous
DEFINE, DERIVE, or EXEC SQL statement. No alias is used with an ASSIGN, the transformation
literally replaces the previous data for the specifical named field.

For example, the compkind is listed in the SELECT command. The CODENAME for this field could be
been created in the SELECT command, or as a DEFINE with an alias name, or as an ASSIGN
command in which no alias is necessary.
ASSIGN compkind CODENAME(compkind).

To reassign the map value from metric to English:
ASSIGN map_l map_l/25.4.

To use with the ROUND versus the sprint command:
ASSIGN elev_l ROUND(elev_l * 3.28, -1).

To test for NULL:
ASSIGN fraggt10_l if isnull(fraggt10_l) then 0 else fraggt10_l.

In all instances, the original variable is recalculated but maintains the original variable name.

DERIVE
The DERIVE requires the use of BASE TABLE and calls a NASIS interpretation property to compute
available water capacity for each component. The BASE TABLE in the report must match that one
identified in the Property. Note that table.column structure for the component.seqnum is included in
the SORT clause to specify the specific seqnum column to be used. If sequence number is populated, it
will override sorting by component percent.

NASIS SQL GUIDE

66
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

BASE TABLE component.

EXEC SQL
SELECT nationalmusym, compname, component.seqnum, comppct_r
FROM mapunit
INNER JOIN correlation by default
INNER JOIN datamapunit by default
INNER JOIN comonent by default
WHERE repdmu = 1;
 SORT BY nationalmusym SYMBOL, component.seqnum, comppct_r DESC, compname.

DERIVE awc FROM rv USING "NSSC Pangaea":"AVAILABLE WATER CAPACITY".

CVIR References
BASE TABLE statement p.11
EXEC SQL statement p. 35
SORT BY Specifications p. 39
DERIVE statement p. 34

PARAMETER
Parameter statements are explained on page 54 of the CVIR guide. This report uses the Parameter
statement creating a user defined title. The format used in this report is similar to standard NASIS
reports. There are many examples of the PARAMETER statement. The example text formatted report:

NASIS SQL GUIDE

67
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PARAMETER subtitle CHARACTER PROMPT "Report Subtitle".
EXEC SQL
SELECT areaname, liid, legenddesc, nationalmusym, musym, muname
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
WHERE mustatus = "correlated";
SORT BY areaname, musym SYM.

DEFINE dt TODAY.
DEFINE legend_name areaname || " -- " || legenddesc.

 TEMPLATE muline SEPARATOR "|" AT LEFT FIELD WIDTH 6, FIELD WIDTH 6, FIELD WIDTH 58, "".

 HEADER
 AT 1 "U.S. Department of Agriculture";
 AT RIGHT "Page ", PAGE WIDTH 3.
 AT 1 "Natural Resources Conservation Service";
 AT RIGHT dt WIDTH 10.
 SKIP 3 LINES.
 AT CENTER "SOIL MAP LEGEND".
 END HEADER.

 SECTION main
 HEADING
 AT CENTER subtitle WIDTH 75 ALIGN CENTER.
 AT CENTER legend_name WIDTH 75 ALIGN CENTER.
 SKIP 1 LINE.
 AT LEFT "_" WIDTH 74 REPEAT.
 USING muline.
 USING muline "Map Symbol" ALIGN CENTER," NAT Map Symbol" ALIGN CENTER,
 "Map Unit Name" ALIGN CENTER.
 USING muline "_" REPEAT, "_" REPEAT, "_" REPEAT.
 USING muline.

 DATA
 USING muline musym INDENT 1, nationalmusym INDENT -1, muname INDENT -1.
 END SECTION.

 SECTION WHEN LAST OF liid
 DATA
 USING muline "_" REPEAT, "_" REPEAT, "_" REPEAT.
 NEW PAGE.
 END SECTION.

NASIS SQL GUIDE

68
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

CVIR References
PARAMETER statement p. 54

PARAMETER Example

Use what you know from previous examples to create a report with a conditional statement allowing
the user to choose by survey area number and their choice of map unit status and present a formatted
legend report that includes the parameter selections as part of a title. The mapunit symbol, national
map unit symbol, map unit name and map unit acres are the columns.

Sample Report Output

Your report parameter should look similar to the sample given here.

NASIS SQL GUIDE

69
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PARAMETER area ELEMENT area.areasymbol PROMPT "Survey Area Symbol".
PARAMETER stat MULTIPLE ELEMENT mapunit.mustatus.

EXEC SQL
SELECT areasymbol, areaname, liid,
legenddesc, nationalmusym,
musym, muname, muacres,
codename(mustatus) mustatus
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
WHERE areasymbol = area AND
 mustatus IN(stat);
 SORT BY areaname, musym SYM.

NASIS SQL GUIDE

70
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PARAMETER Examples

PARAMETER area ELEMENT area.areasymbol PROMPT "Survey Symbol".

PARAMETER geographic_applicability ELEMENT legend.legendsuituse PROMPT "Geographic
Applicability? (Normally want current wherever mapped)".

PARAMETER comp_nam ELEMENT component.compname PROMPT "Use * wildcard for all comps, or
type in a component name".

PARAMETER majcomp ELEMENT component.majcompflag PROMPT "Check if major comps only. Don't
check for majors and minors".

PARAMETER naname ELEMENT nasissite.nasissitename PROMPT "MLRA Office imatches".

PARAMETER soil CHARACTER PROMPT "Sampled as name to be queried".

PARAMETER fy NUMERIC PROMPT "Fiscal Year (4 digits)" required.

NASIS SQL GUIDE

71
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

REGROUP
This report introduces the use of the REGROUP statement that is a secondary aggregation. REGROUP
reduces each variable to one value. Note in this report that hzname must be done last so numbers of
values match. REGROUP is part of the aggregation clause and allows for re-aggregation of your data
after the initial aggregation. The unified (all horizon data) is aggregated using NONE so that the horizon
level data is not aggregated to the component name. It is regrouped below to have it aggregate at the
horizon level instead of the component level.

BASE TABLE component.

EXEC SQL
SELECT compname, slope_r, hzname, hzdept_r, hzdepb_r, claytotal_r, unifiedcl, chunified.rvindicator
FROM component
INNER JOIN chorizon by default
INNER JOIN chunified by default
WHERE chunified.rvindicator = 1;
SORT by compname, hzdept_r
AGGREGATE ROWS compname COLUMN hzname none, hzdept_r none, hzdepb_r none, claytotal_r
none, unifiedcl none.

This query creates the first aggregation on the component name so each component has all of its
various horizons and clays and unified texture. Many components and all of their data.

NASIS SQL GUIDE

72
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ASSIGN unifiedcl REGROUP codename(unifiedcl) by hzname aggregate list ", ".
ASSIGN hzdept_r REGROUP hzdept_r by hzname aggregate first.
ASSIGN hzdepb_r REGROUP hzdepb_r by hzname aggregate first.
ASSIGN claytotal_r REGROUP claytotal_r by hzname aggregate first.
ASSIGN hzname REGROUP hzname by hzname aggregate first. #always regroup hzname last.

The second aggregation is the REGROUP and each regroup is on the horizon name for each component -
first put the multiple unified texturres on one cell all concatenated using a comma. Next aggregate all
top depths by component name and take the first top depth in the group. Then the same aggregation
with bottom depth and with clay total. The last regroup is the regroup all horizons by hzname.

REGROUP uses an ASSIGN statement so that they each can be aggregated via hzname. The list is
defaulted to the comma ", " but is listed is limited to the first value for assign.

CVIR References
REGROUP statement p. 31
ASSIGN statement p.12

NASIS SQL GUIDE

73
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

LOOKUP
This report introduces the use of the LOOKUP (CVIR page 25) which selects values from an array based
on an index or condition. Two or three parameters can be used. The first expression is the key, which
must be a single value, and the second expression is the index array. The key and the index must have
the same type of data. In this example the maximum bulk density by horizon, by component name is
being displayed. (OUTPUT is necessary to show results).

EXEC SQL
SELECT compname, slope_r, hzname, hzdept_r,
hzdepb_r, dbthirdbar_r, dbthirdbar_r maxdb
third bar is used twice, once to pull the value for
the horizon, the second renamed with an alias of
maxdb, for use in the aggregation below.
FROM component
inner join chorizon by default
WHERE majcompflag = 1;
SORT by compname, hzdept_r
AGGREGATE rows compname column hzname
none, hzdept_r none, hzdepb_r none,
dbthirdbar_r none, maxdb max.

using the aggregation COLUMN, the maximum
value from maxdb value is selected.

PAGE WIDTH 10 in.

Using ASSIGN and LOOKUP, the maxdb is the key and the third bar and horizon depth are
the parameters. Lookup finds the data for the horizon with the greatest bulk density.

ASSIGN hzdept_r LOOKUP (maxdb, dbthirdbar_r, hzdept_r).
ASSIGN hzdepb_r LOOKUP (maxdb, dbthirdbar_r, hzdepb_r).
ASSIGN hzname LOOKUP (maxdb, dbthirdbar_r, hzname).

maxdb is the “key” and is used in the LOOKUP to find the horizon top depth and bottom depths in
which the max BD occurs. Once again, the final LOOKUP is on the hzname.

TEMPLATE basic separator "|"
AT LEFT field width 15, field width 6, field width 8, field width 6, field width 6, field width 6.

SECTION
HEADING
 USING basic "Component", "Slope", "Horizon", "Top", "Bottom", "Db".
 USING basic "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat.
DATA
 USING basic compname, slope_r, hzname, hzdept_r, hzdepb_r, maxdb.
END SECTION.

NASIS SQL GUIDE

74
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Same Lookup Report using HTML coding

EXEC SQL
SELECT compname, slope_r, hzname, hzdept_r, hzdepb_r, dbthirdbar_r, dbthirdbar_r maxdb
third bar is used twice, once for the with an alias of maxdb
FROM component
inner join chorizon by default
WHERE majcompflag = 1;
SORT by compname, hzdept_r
AGGREGATE rows compname column hzname none,
hzdept_r none, hzdepb_r none, dbthirdbar_r none, maxdb
max.

ASSIGN hzdept_r LOOKUP (maxdb, dbthirdbar_r,
hzdept_r).
ASSIGN hzdepb_r LOOKUP (maxdb, dbthirdbar_r,
hzdepb_r).
ASSIGN hzname LOOKUP (maxdb, dbthirdbar_r,
hzname).

TEMPLATE basic TAG "td" ATTRIB ("role", "center")
 ELEMENT "tr" FIELD, FIELD, FIELD, FIELD, FIELD, FIELD.

SECTION WHEN AT START
DATA
 ELEMENT OPEN "HTML".
 ELEMENT OPEN "body" .
 ELEMENT "h2" ATTRIB("style", "color:Green") "List of Components" .
 ELEMENT OPEN "table" ATTRIB("border", "5") ATTRIB("style", "background-color:white").
 ELEMENT OPEN "thead" ATTRIB("align", "center") .
 using basic "Component Name", "Slope", "Hzn", "Top", "Bot", "MaxDb".
 ELEMENT CLOSE "thead".
END SECTION.
SECTION
DATA
 ELEMENT OPEN "tbody".
 ELEMENT OPEN "tr".

 USING basic
 compname TAG "td" VALUETAG "para" ATTRIB ("role", "number"),
 slope_r TAG "td" VALUETAG "para" ATTRIB ("role", "number"),
 hzname TAG "td" VALUETAG "para" ATTRIB ("role", "number"),
 hzdept_r TAG "td" VALUETAG "para" ATTRIB ("role", "number"),
 hzdepb_r TAG "td" VALUETAG "para" ATTRIB ("role", "number"),
 maxdb TAG "td" VALUETAG "para" ATTRIB ("role", "number").

 ELEMENT CLOSE "tr".
 ELEMENT CLOSE "tbody".
END SECTION.
SECTION WHEN AT END
 DATA
 ELEMENT CLOSE "table".
 ELEMENT CLOSE "body".
 ELEMENT CLOSE "HTML".
END SECTION.

NASIS SQL GUIDE

75
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ARRAY

This report introduces the use of the various ARRAY features (begin on p 23 CVIR) that computes a value
in a multiple valued expression.

EXEC SQL select compname, hzdept_r
from component, outer chorizon
where join component to chorizon;
sort by compname, hzdept_r
aggregate rows compname
column hzdept_r none.

PAGE WIDTH 20 in.

Create new variables to hold results of
each array manipulation function.

DEFINE ashift ARRAYSHIFT (hzdept_r, 1).
DEFINE arot ARRAYROT (hzdept_r, -2).
DEFINE amax ARRAYMAX (hzdept_r).
DEFINE amin ARRAYMIN (hzdept_r).
DEFINE asum ARRAYSUM (hzdept_r).
DEFINE aavg ARRAYAVG (hzdept_r).
DEFINE acat ARRAYCAT (sprintf("%.f", hzdept_r), "-").
#arraycat works on a set of numbers for one given variable it is not used on example L-R-H

TEMPLATE basic separator "|" width 6 replace null with "--"
at left field width 15 separator "", field, field, field, field, field, field, field, field width 15.

SECTION
 HEADING
 USING basic "Component", "Depth", "Shift 1", "Rotate -2", "Max", "Min", "Sum", "Avg.", "Cat".
 USING basic "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_"
repeat, "_" repeat.
 DATA
 USING basic compname, hzdept_r, ashift, arot, amax, amin, asum, aavg, acat.
END SECTION.

CVIR References pp. 20-25
ARRAYSHIFT, ARRAYROT, ARRAYMAX, ARRAYMIN, ARRAYSUM, ARRAYAVG, ARRAYCAT

NASIS SQL GUIDE

76
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ARRAY - another method

This report uses the DEFINE statement to create an
array.

Report Script

EXEC SQL
select compname, hzdept_r
from component
left outer join chorizonby default;
sort by compname, hzdept_r
aggregate rows compname
column hzdept_r none.

Create new variables to hold results of each array
manipulation function.

DEFINE is0 if hzdept_r == 0 then "yes" else "no".
DEFINE anyis0 if any(hzdept_r == 0) then "yes" else "no".
DEFINE anynot0 if any(hzdept_r != 0) then "yes" else "no".
DEFINE notany0 if not any(hzdept_r == 0) then "yes" else "no".
DEFINE allis0 if all(hzdept_r == 0) then "yes" else "no".
DEFINE isanull if isnull(hzdept_r) then "yes" else "no".

PAGE WIDTH 20 in.
TEMPLATE basic separator "|" width 6 replace null with "--"
at left field width 15 separator "", field, field, field, field, field, field, field.

SECTION
 HEADING
 USING basic "Component", "Depth", "Is 0", "Any 0", "Any Not 0", "Not Any 0", "All 0", "Null".
 USING basic "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_" repeat, "_"
repeat.
 DATA
 USING basic compname, hzdept_r, is0, anyis0, anynot0, notany0, allis0, isanull.
END SECTION.

NASIS SQL GUIDE

77
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 WTAVG
(CVIR p. 28) The WTAVG computes the sum of the first expression’s values after multiplying each by a
weighting factor, taken from the corresponding value of the second expression, and then divides the
result by the sum of the weights. In this example the weighted average of the Bulk Density is
component based on the coiid.

Report Script

BASE TABLE component.
EXEC SQL
select compname, hzdept_r, dbthirdbar_r, coiid,
chiid
from component
inner join chorizon by default;
sort by coiid, compname, chiid, hzdept_r
aggregate rows coiid column hzdept_r none,
dbthirdbar_r none, coiid none, compname, chiid
none.

PAGE WIDTH 20 in.

Property returns a multi-valued variable containing
the RV thickness of that part of each horizon which
is in the specified depth range. If a horizon is entirely
outside the range its thickness is set to 0.

DERIVE layer_thickness USING "NSSC Pangaea":"LAYER THICKNESS IN RANGE (Generic)" (0, 2000).

Compute average bulk density weighting each horizon by its thickness.

DEFINE average_db WTAVG(dbthirdbar_r, layer_thickness).

TEMPLATE basic separator "|"
AT LEFT field width 15, field width 15.

SECTION when first of coiid
HEADING
 USING basic "Component", "Average Bulk Density".
 USING basic "_" repeat, "_" repeat.
DATA
 USING basic compname, average_db decimal 2.
END SECTION.

NASIS SQL GUIDE

78
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

INCLUDE and ACCEPT
The INCLUDE command runs another report (subreport) and inserts its output as a logical line in the first
report. Parameters may be passed to the subreport, and they must correspond with variables in the
subreport’s ACCEPT statement. Typically a record key would be passed as a parameter, which would be
used by the subreport to query for information related to that record.

AT LEFT musym WIDTH 8, muname WIDTH 50.
INCLUDE “MLRA10_Office”:”Component drainage” (dmuiid, coiid).

An output specification is used either to control spacing on the page or to produce actual report output.
Output specifications can be either conditional or unconditional. When the IF clause is used, the IF
expression is evaluated each time the section is processed. The expression follows the same rules as
expressions for the DEFINE statement (see page 17). If it results in a True (non-zero) value, the output
content is produced. If the value of the expression is False (a null, a zero or an empty character string)
nothing is output. Without the IF clause, the output is always produced when its section is printed.

The ACCEPT statement defines variables that are passed into the script. These variables can be used in
expressions to calculate values for other variables. They can also be used in the WHERE clause of a query
by writing $name, where name is the name of the variable. This creates a parameterized query, as
discussed under EXEC SQL.

The ACCEPT statement could be used in a subreport. The value of a key column such as dmuiid might be
passed by a higher level report, and the subreport would use it in a query to find data related the to
data mapunit being processed in the higher level report.

ACCEPT dmuiid, coiid.

EXEC SQL
SELECT dmudesc, compname, comppct_r
FROM datamapunit
INNER JOIN component by default
WHERE dmuiid = $dmuiid AND
SORT BY dmudesc, comppct_r DESC, compname LEX.

Using Subreports

This topic is discussed in the INCLUDE and ACCEPT section of this document.

The purpose of a subreport is to produce some output that is loosely coupled to the primary report,
meaning that a subreport has its own set of queries and output specifications that might not be related
to those of the primary report. It allows for greater flexibility in cases where complex formatting is
required.

A subreport is requested with an INCLUDE statement in the data block of an output section. The entire
output of a subreport is inserted in the data block as a single logical line. If keep processing is in effect, it
will attempt to keep the subreport output together on a single page. Therefore it is advisable to design
subreports so their output is less than a page. Longer output will spill over onto additional pages of the

NASIS SQL GUIDE

79
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

main report and possibly produce unwanted results. However, it is also possible to have a main report
that produces no output of its own and only calls a series of subreports, in which case the main report
will be a page by page copy of the subreports.

Subreports may not specify any page layout, such as the page size, font, headers or footers. The page
layout of the main report controls all output from subreports.

A report and its subreports do not need to use the same base table, and no automatic synchronization is
done as with properties in a DERIVE statement. Subreports may call themselves in a recursive fashion to
produce a report on recursively organized data. An example is a report to list rules and all their subrules
at any depth. It is important to pass the right parameters to a subreport so that it will find the right
records to report on and not get into an endless recursion.

NASIS SQL GUIDE

80
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

CROSSTAB
Crosstab allows data to be transformed from rows of data to columns of data. In a SQL, the data would
be returned as rows of data. Using the CROSSTAB, the aggregated tab is assigned as columns. The
column labels are those assigned in the data dictionary. The crosstab is a special type of aggregation
that assigns values to positions in an array based on the value of a controlling column. It requires a
CROSSTAB column, and one or more CELLS columns. The CROSSTAB function requires an
OUTPUT formatted report.

Report Script

EXEC SQL select areasymbol, mapunittextkind, count(*) as rowcount
from real area
INNER JOIN real legend by default
INNER JOIN real lmapunit by default
INNER JOIN real mapunit by default
INNER JOIN real mutext by default
where areasymbol matches "KS169"
group by areasymbol, mapunittextkind;

SORT BY areasymbol sym, mapunittextkind
AGGREGATE ROWS areasymbol
CROSSTAB mapunittextkind
CELLS rowcount.

The Crosstab in the above report identifies the number of text notes, by category, for a given survey
area.

NASIS SQL GUIDE

81
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Another example is this report that uses the Parameter statement for a user to define the months to be
used in the report. The Parameter allows for multiple selections from the component month table. The
format used in this report is similar to standard NASIS reports.

Notice the columns are those user defined months selected from the Parameter box.

Report Script

PARAMETER months ELEMENT comonth.month SELECTED CODEVAL MULTIPLE.

EXEC SQL
select compname, month, flodfreqcl, floddurcl
from component
INNER JOIN comonth by default;

Query aggregation selects flooding frequency and duration by month.

SORT BY compname, month
AGGREGATE ROWS compname
CROSSTAB month VALUES (months)
CELLS flodfreqcl, floddurcl.

PAGE LENGTH unlimited WIDTH
unlimited.

Translate internal code
representations into names. For the
month, use
CODELABEL to get the correct
capitalization.

DEFINE monthname
CODELABEL(month).
DEFINE floodfreq CODENAME(flodfreqcl).
DEFINE floodduration CODENAME(floddurcl).

The ARRAY format places array values across the page rather than in a column.

TEMPLATE compline
AT LEFT field width 15 separator "", ARRAY (field width 10 separator "|").

SECTION

NASIS SQL GUIDE

82
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

HEADING
 USING compline "Component", monthname.
 USING compline "_" REPEAT, "_" REPEAT.
DATA
 USING compline compname, floodfreq.
 USING compline "", floodduration.
END SECTION.

NASIS SQL GUIDE

83
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

COUNT
This report includes the Aggregation statement and a Crosstab that identifies the number of text notes,
by category, for a given survey area. The previous crosstab was used to report the flooding frequency by
the selected month(s). This example query uses the crosstab to identify the various choices of map unit
text Kinds and the number of times each kind is used for a given survey. The Query aggregation finds all
distinct mapunit text kinds, then counts how many times each occurs for each area symbol. The crosstab
must be in a sort by for this to work. The use of 1 is a mathematical expression used in the select or
define clauses this instance every time it comes up, there is a 1 and rowcount is the name. The word
"as" is optional. rowcount is another column and it lists a 1 for each of the areasymbols and
mutextkinds. The sum in COLUMN is used to tally the rowcount's. There are only 3 columns used
(areasymbol, mutextkind, and rowcount). This query uses the REAL command to return to the local
database to retrieve data. Column labels are from the data dictionary.

NASIS SQL GUIDE

84
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercise Transect Summary report

Develop a transect summary sheet. Using what you know from previous examples, create a new report
with formatted columns and headings for Transect IDs “07905KS185-5910*”. The report is to show User
Transect ID, sampled names, Number of Pedons, and Percent of Transect. Sort the report by User
Transect ID. Adjust your column format so that the report fits one page wide. Use aggregation to
eliminate duplicate User Transect IDs in your report.

NASIS SQL GUIDE

85
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PARAMETER trans ELEMENT utransectid MULTIPLE.

EXEC SQL
 select utransectid, soinmassamp, count(*) soilcount
 from REAL transect, REAL pedon
 WHERE utransectid matches trans and join transect to pedon
 group by utransectid, soinmassamp;
 sort by utransectid, soinmassamp
 aggregate rows by utransectid crosstab soinmassamp cells soilcount.

 PAGE WIDTH 15 in.

 assign soilcount if isnull(soilcount) then 0 else soilcount.
 define tot ARRAYSUM(soilcount).
 define pct (soilcount/tot) * 100.

 template basic separator "|"
 at left field width 20, field width 25, field width 10 align center,
 field width 10 align center.

SECTION
 HEADING
 USING basic "User Transect ID", "Soil Name as Sampled", "Number of",
 "Percent of".
 USING basic "","","Pedons", "Transect".
 DATA
 SKIP 1 LINE.
 USING basic utransectid, soinmassamp, soilcount, pct.
END SECTION.

NASIS SQL GUIDE

86
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Output
The report output format is controlled with a few commands. Detailed instructions and syntax can be
found in the CVIR manual for reports.

TEMPLATE, SECTION, COLUMN FORMAT
Report Output

This next example is a text report has been formatted using column formats and a heading. Note that
some mapunits may not have component names but are included in your report because of an OUTER
join is specified in the query. Note also that map symbols and map unit name repeat when a mapunit
has several components. This is not a default format report. The page layout is specified by use of
templates, sections, and column formats.

Report Script
The EXEC SQL simply collects the data; the SECTION specifies which columns will be printed. A
TEMPLATE is used to simplify coordination between headings and data. Report formatting is contained
in a SECTION which includes both the HEADING and DATA. Column layout specifications are shown in
bold. Note that the SELECT clause returns map units even though no component data (symbol 2q5g8) is
available to print in the report.

EXEC SQL
SELECT nationalmusym, muname, repdmu, compname, comppct_r
FROM mapunit
LEFT OUTER JOIN correlation by default
LEFT OUTER jOIN datamapunit by default
LEFT OUTER JOIN component by default;
SORT BY muname, comppct_r DESC.

TEMPLATE dline SEPARATOR "|" AT LEFT
FIELD WIDTH 8, FIELD WIDTH 48, FIELD
WIDTH 15, "".

SECTION
 HEADING

 AT LEFT "_" REPEAT WIDTH 74.
 USING dline.
 USING dline
 "NAT Map Symbol" ALIGN CENTER,
 "Map Unit Name" ALIGN CENTER,
 "Component Name" ALIGN CENTER.
 USING dline "_" REPEAT, "_"
REPEAT, "_" REPEAT.

 DATA
 USING dline
 nationalmusym ALIGN RIGHT INDENT 1,
 muname INDENT -1,
 compname INDENT 1.

NASIS SQL GUIDE

87
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

END SECTION.

CVIR References

EXEC SQL statement p. 35
 This SQL is discussed in previous sections in the query section and report section.
Sort Specifications p. 39
TEMPLATE statement p.80
 The TEMPLATE is used in report formatting. The function allows the user to define a column

format and use it repeatedly to format data. This function can be used to identify the column
separator, the width of each column and column format.

SECTION statement p.59
 The SECTION query is used to format the various formats on the page. The Heading and the

Data ‘sections’ identify those fields used as the column headers and those data fields filling each
column.

Column Layout Specifications p.72
 Column layout specifications allow the format of the data within the column. Notice the use of
the Align – left, center, right’ along with other available options.
Discussion:

Defining template – first and last columns
Separator and pipe
AT LEFT
FIELD WIDTH
SECTION
Align center
Align right

FONT
The font is defaulted no user control over the font in a text output.

MARGIN
The default margin is half inch on all margins; otherwise, you can specify the margins.
If the page length is UNLIMITED the top and bottom margins are ignored, and if the page width is
UNLIMITED the left and right margins are ignored.
EXAMPLE:

MARGIN TOP 1 inch BOTTOM 1 inch LEFT 1 inch RIGHT 1 inch.

PAGE
The default page width is 8.5 by 11 inches otherwise, you can specify the size. If inches is not specified
then the width and length are controlled by the pitch.
LENGHT UNLIMITED WIDTH UNLIMITED is used for data exports and files to be used in other programs
to eliminate extra lines and page breaks.
EXAMPLE:

PAGE WIDTH 144 LENGTH 88.
OR

PAGE WIDTH 8 INCHES LENGTH 11 INCHES.

NASIS SQL GUIDE

88
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

OR
LENGTH UNLIMITED WIDTH UNLIMITED.

PITCH
The pitch defines the character spacing, in characters or lines per inch. The default is horizontal 10
characters per inch and vertical 6 lines per inch, which corresponds to a 12-point fixed-width font such
as Courier
EXAMPLE:

PITCH HORIZONTAL 17 VERTICAL 8.

TEMPLATE
A template describes the format of a report line without the data. Templates are not required, but are
useful to avoid repetitive specification of layout options. Putting the statement “USING template-name”
into an output specification copies all the column layout information from the template into the output
specification. The template is invoked with a USING statement, other layout options can be given, which
take precedence over the template.

EXAMPLE:

TEMPLATE basic SEPARATOR “|” AT LEFT FIELD WIDTH 8, FIELD WIDTH 50.

HEADER and FOOTER
INITIAL HEADER is printed only once on the first page.
HEADER is the headers printed on every page.
FINAL FOOTER is print only on the last page.
FOOTER is printed at the bottom of every page.
EXAMPLE:

HEADER
AT CENTER “Sample Report”.
SKIP 2 LINES.
END HEADER.

HEADERS

Report Output

This report uses headers to improve the appearance. Note that a horizontal line has been added to the
bottom of the report.

Report Script

Specifications for the report header are in the HEADER part of the report. Note the difference in usage
between HEADER and a SECTION HEADING.

 EXEC SQL
 SELECT areaname, musym, muname
 FROM area
 INNER JOIN legend by default
 INNER JOIN lmapunit by default

NASIS SQL GUIDE

89
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 INNER JOIN mapunit by default
 WHERE mustatus = "correlated";
 SORT BY areaname, musym SYM.

 TEMPLATE muline SEPARATOR "|" AT LEFT FIELD WIDTH 8, FIELD WIDTH 64, "".

 HEADER
 AT 1 "U.S. Department of Agriculture";
 AT RIGHT "Page ", PAGE WIDTH 3.
 AT 1 "Natural Resources Conservation
Service".
 SKIP 3 LINES.
 AT CENTER "SOIL MAP LEGEND".
 END HEADER.

 SECTION
 HEADING
 AT CENTER areaname WIDTH 75
ALIGN CENTER.
 SKIP 1 LINE.
 AT LEFT "_" WIDTH 74 REPEAT.
 USING muline.
 USING muline "Map Symbol" ALIGN CENTER,
 "Map Unit Name" ALIGN CENTER.
 USING muline "_" REPEAT, "_" REPEAT.

 DATA
 USING muline musym INDENT 1, muname INDENT -1.
 END SECTION.

 SECTION WHEN LAST OF areaname
 DATA
 USING muline "_" REPEAT, "_" REPEAT.
 NEW PAGE.
 END SECTION.

CVIR References
HEADER statement p. 47

NASIS SQL GUIDE

90
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

DATE, SUBTITLE, SKIP LINES
Report Output

This report includes a date, dynamic subtitle, and additional line in the column titles. The format used in
this report is similar to standard NASIS reports.

Report Script

The DEFINE statement is used to
include today’s date and
concatenate two fields that will be
used in the HEADING.

EXEC SQL
 SELECT areaname, liid,
legenddesc, nationalmusym, musym,
muname
FROM area
INNER JOIN legend by default
INNER JOIN lmapunit by default
INNER JOIN mapunit by default
 WHERE mustatus = "correlated";
 SORT BY areaname, musym SYM.

 DEFINE dt TODAY.
 DEFINE legend_name areaname || " -- " || legenddesc.

 TEMPLATE muline SEPARATOR "|"
AT LEFT FIELD WIDTH 6, FIELD WIDTH 6, FIELD WIDTH 58, "".

 HEADER
 AT 1 "U.S. Department of Agriculture";
 AT RIGHT "Page ", PAGE WIDTH 3.
 AT 1 "Natural Resources Conservation Service";
 AT RIGHT dt WIDTH 10.
 SKIP 3 LINES.
 AT CENTER "SOIL MAP LEGEND".
 END HEADER.

 SECTION main
 HEADING
 AT CENTER legend_name WIDTH 75 ALIGN CENTER.
 SKIP 1 LINE.
 AT LEFT "_" WIDTH 74 REPEAT.
 USING muline.
 USING muline "Map Symbol" ALIGN CENTER," NAT Map Symbol" ALIGN CENTER,
 "Map Unit Name" ALIGN CENTER.
 USING muline "_" REPEAT, "_" REPEAT, "_" REPEAT.

NASIS SQL GUIDE

91
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 USING muline.

 DATA
 USING muline musym INDENT 1, nationalmusym INDENT -1, muname INDENT -1.
 END SECTION.

 SECTION WHEN LAST OF liid
 DATA
 USING muline "_" REPEAT, "_" REPEAT, "_" REPEAT.
 NEW PAGE.
 END SECTION.

CVIR References
DEFINE statement p. 13
Line Specifications p. 64

NASIS SQL GUIDE

92
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

SECTION
A report section defines a block of report output that is produced as a unit. A section can be
unconditional, meaning that the section’s data block is printed on each cycle of the report’s main query,
or it can be printed only when certain conditions occur. A report can have any number of sections. The
sections are printed in the order determined by their conditions, as discussed below under Section
Conditions. Names are used in the KEEP option, and can be useful as documentation.
 Sections are divided into two parts HEADING and DATA. HEADINGs create the column headings or a
title for the section. The DATA section prints the data based on section and query conditions in the
report section.

SECTION: Conditions
A condition specifies when the section is used. If no condition is provided, the section appears for each
report cycle. Sections are set with conditions. All conditions begin with WHEN and the condition. The
order of processing for section conditions is:

 AT START (only once per report)
FIRST OF (per report cycle)

Other sections, in the order they appear in the script
LAST OF (per report cycle)
AT END (only once per report)

The other sections conditions could use any kind of comparison or boolean condition. A NO DATA
section prints only if there are no input records, and could be used print a message such as “No data
found”. If the NO DATA section is not used and there is no input, no report output is produced. Instead,
a warning dialog is displayed to the user.

EXAMPLE:

SECTION WHEN type == 2

 SECTION WHEN FIRST OF muiid

 SECTION WHEN LAST OF liid

KEEP option
This option will keep the data together when it gets to the bottom of the page. If KEEP is not used the
data could be split on to different pages.
EXAMPLE:

SECTION a
END SECTION.
SECTION b KEEP WITH a
END SECTION.

KEEP options are ignored when XML style output is produced.
All page layout is controlled by the style sheet applied to the output of the report generator.

SECTION CONDITIONAL STATEMENTS

This report prints the publication symbol, map unit name, component names and percentages. But
conditional sections are used to organize the page layout differently.

Report Script

NASIS SQL GUIDE

93
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

This script uses a conditional statement on the SECTION to control the grouping and reporting of data
from the database view. The section condition is shown in bold. Note that aggregation is not used in
this example and each input row from the database view is an iteration of the report. The report is
processed one input row (one iteration) at a time and both sections are evaluated for possible printing
before the next input row is processed.

EXEC SQL
SELECT musym, muname, compname, comppct_r,
repdmu
FROM lmapunit
INNER JOIN mapunit by default
INNER JOIN correlation by default
INNER JOIN datamapunit by default
LEFT OUTER JOIN component by default;
SORT BY musym SYM, comppct_r DESC.

TEMPLATE muline
AT LEFT FIELD WIDTH 8 ALIGN RIGHT INDENT 1, FIELD
WIDTH 50.

TEMPLATE compline
AT 7 FIELD WIDTH 6 ALIGN RIGHT INDENT 1, FIELD
WIDTH 25.

SECTION WHEN FIRST OF musym
 DATA
 SKIP 1 LINE.
 USING muline musym, muname.
END SECTION.

SECTION
 DATA
 USING compline comppct_r, compname.
END SECTION.

CVIR References
EXEC SQL statement p. 35
Sort Specifications p. 39
TEMPLATE statement p.80
SECTION statement p.59
Column Layout Specifications p.72

NASIS SQL GUIDE

94
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

QUOTED function

Report Output
This report introduces other methods of formatting data for importing into other softwares. (p. 77)

Report Script
EXEC SQL select dmudesc, compname, comppct_r, slope_l, slope_h, drainagecl, elev_l, elev_h
from datamapunit
inner join component by default;.

PAGE LENGTH UNLIMITED WIDTH UNLIMITED.
DEFINE drainage codename(drainagecl).

TEMPLATE export SEPARATOR "," WIDTH UNLIMITED
 AT LEFT field SEPARATOR "", field, field, field, field, field, field, field.

SECTION
DATA
 USING export
 dmudesc QUOTED,
 compname QUOTED,
 comppct_r DECIMAL 0,
 slope_l DECIMAL 1,
 slope_h DECIMAL 1,
 drainage QUOTED,
 elev_l DECIMAL 0 NO COMMA,
 elev_h DECIMAL 0 NO COMMA.
END SECTION.

NASIS SQL GUIDE

95
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercise 6. Creating a Data Export Format
Use an existing NASIS Property and what you know from previous examples to create a report with
comma delimited columns, quoted text, and no headings that shows minimum representative depth to
seasonal high water table for the dominant component of each map unit. You should use the PAGE
statement to eliminate page breaks. You should also use column layout specifications to format rows of
data. Your report output will be suitable for saving as an ASCII file that can be imported into other
databases.

Sample Report Output

Your report should look similar to the sample given here. Depth is reported in centimeters.

NASIS SQL GUIDE

96
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

LINE SPECIFICATIONS
This option controls each line of data with key terms and IF THEN conditions.
The most common specifications are

USING (template name),
SKIP line-controls spacing;
NEW PAGE-creates a new page;
INCLUDE (report name)-Adds data from a subreport;
AT Statement -controls the position on the page.

EXAMPLE:

SKIP 2 LINES.

AT LEFT musym WIDTH 8, muname WIDTH 50.

IF comp_pct > 10 USING comp_tmpl compname, slope_l, slope_h.

INCLUDE “MLRA10_Office”:”Flood Subreport” (dmudbsidref, coiid).

If the condition is True the output content is produced. If the value of the expression is False nothing is
output. Without the IF clause, the output is always produced when its section is printed.

EXAMPLE:

AT LEFT musym WIDTH 8, muname WIDTH 50.

AT CENTER title WIDTH 20 CENTERED; AT RIGHT date WIDTH 12.

NASIS SQL GUIDE

97
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

COLUMN SPECIFICATIONS
This option identifies exactly what will be printed at a particular spot in a report. These specifications
are added after each column of data. Some of the most common are WIDTH, DECIMAL, ALIGN,
SEPARATOR, NO COMMA and SUPRESS DUPLICATES.

EXAMPLE:

AT LEFT musym width unlimited SEPARATOR “|”, muname width unlimited.

The SEPARATOR is used to separate columns. The SEPARTOR precedes the column of stat so if you do
not want a SEPARTOR at the beginning of the table you have to specify “NO SEPARATOR” as a column
specification and if you want a vertical line at the end of the table you have to create a null field “” with
SEPARTOR.

NASIS SQL GUIDE

98
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Exercise Creating a Formatted Report

Using what you know, create a new report with formatted columns and headings that shows mapunit
symbols, mapunit names, components, and component percentages. Sort the report by mapunit
symbol and show the dominant components first. Adjust your column format so that the report fits one
page wide. Use aggregation to eliminate duplicate map symbols and map unit names in your report. Be
sure to keep component percent correctly coordinated with their corresponding component names.

Sample Report Output
Your report should look similar to the sample given here.

NASIS SQL GUIDE

99
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

Interpretation Reports
The complexity of reporting interpretations increased in NASIS 6. Interpretation reports require specific
formating to handle running the interpretation, retrieving the results and reporting the final product.

MANU - Sewage Disposal text

BASE TABLE component.

INTERPRET "NSSC Pangaea": "ENG - Septic Tank Absorption Fields",
 "NSSC Pangaea": "ENG - Sewage Lagoons"

 MAX RULEDEPTH 1
 MAX REASONS 5

AGGREGATE CROSSTAB BY PrimaryRuleInterpRuleName
VALUES ("ENG - Septic Tank Absorption Fields", "ENG - Sewage Lagoons")
LABELS "Septic Tank \nAbsorption Fields", "Sewage Lagoons"
CELLS RatingValueHighRV, InterpRuleDepth, RatingClassNameHighRV.

EXEC SQL
SELECT areaname, legenddesc, liid, musym, lmapunitiid, lmapunit.seqnum,
 compname, component.seqnum, comppct_r, coiid, localphase
FROM real area, legend, lmapunit, mapunit, correlation, datamapunit, component
WHERE join area to legend and
 join legend to lmapunit and
 join lmapunit to mapunit and
 join mapunit to correlation and
 join correlation to datamapunit and
 repdmu=1 and
 join datamapunit to component ;
SORT BY liid, lmapunit.seqnum, musym SYM, component.seqnum, comppct_r DESC,
 compname, coiid.

DEFINE mu_lead CLIP(musym) || ":".
DEFINE dt TODAY.
#--------------------edited-----------------------------

DEFINE soilnm ISNULL(localphase) ? compname : compname||", "||localphase.
DEFINE flag NEW(coiid) ? RatingClassNameHighRV : flag.
DEFINE fuzznum ((flag matches "Not rated*" or flag matches "Not Rated*") or
 (InterpRuleDepth == 0)) ? "" :
 RatingValueHighRV > 0.00 and RatingValueHighRV <= 0.005 ? "0.01" :
 RatingValueHighRV >= 0.99 and RatingValueHighRV < 1.00 ? "0.99" :
 sprintf("%.2f", RatingValueHighRV).

DEFINE rate_reason InterpRuleDepth > 0 and (flag matches "Not rated*" or
 flag matches "Not Rated*") ? "" : RatingClassNameHighRV.

#--

NASIS SQL GUIDE

100
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PITCH HORIZONTAL 15 VERTICAL 8.
PAGE LENGTH 80 WIDTH 8.5 INCH.

Line between margins 105 columns
TEMPLATE heading1
 AT LEFT FIELD WIDTH 21 SEPARATOR "", FIELD WIDTH 4 SEPARATOR "|",
 ARRAY (FIELD WIDTH 25) SEPARATOR "|", "" SEPARATOR "".

TEMPLATE heading2
 AT LEFT FIELD WIDTH 27 SEPARATOR "",
 ARRAY (FIELD WIDTH 19 SEPARATOR "|", FIELD WIDTH 5 SEPARATOR "|"),
 "" SEPARATOR "".

TEMPLATE mapunit
 AT LEFT FIELD WIDTH 21 SEPARATOR "",
 FIELD WIDTH 4 SEPARATOR "|",
 ARRAY (FIELD WIDTH 19 SEPARATOR "|", FIELD WIDTH 5 SEPARATOR "|"),
 "" SEPARATOR "".

TEMPLATE component
 AT LEFT " " SEPARATOR "", FIELD WIDTH 20 SEPARATOR "";
 AT 22 BOTTOM FIELD WIDTH 4 SEPARATOR "|", ARRAY (FIELD WIDTH 19 SEPARATOR "|", FIELD
WIDTH 5 SEPARATOR "|"), "" SEPARATOR "".

TEMPLATE rating
 AT LEFT FIELD WIDTH 21 SEPARATOR "", FIELD WIDTH 4 SEPARATOR "|", ARRAY (FIELD WIDTH 20
SEPARATOR "|", FIELD WIDTH 5 SEPARATOR "|"), "" SEPARATOR "".

HEADER INITIAL
 AT LEFT areaname WIDTH 75; AT 82 "Print date: ", dt WIDTH 10.
 AT LEFT "Sewage Disposal".
 SKIP 2 LINES.
 AT LEFT "(The information in this table indicates the dominant soil condition but does not eliminate
the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The
larger the value, the greater the limitation. See text for further explanation of ratings in this table.)"
WIDTH 78 INDENT -5.
 SKIP 1 LINE.
END HEADER.
#74
HEADER
 AT LEFT areaname WIDTH 75; AT 82 "Print date: ", dt WIDTH 10.
 AT LEFT "Sewage Disposal".
 SKIP 1 LINE.
END HEADER.

SECTION
 HEADING
 AT LEFT "_" REPEAT WIDTH 104.

NASIS SQL GUIDE

101
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 USING heading1.
 USING heading1 "Map symbol\nand soil name" ALIGN CENTER,"Pct.\nof\nmap\nunit" ALIGN
CENTER,
 PrimaryRuleInterpRuleName LABEL ALIGN CENTER.
 USING heading1 "", "", "_" REPEAT.
 USING mapunit "", "", "Rating class and\nlimiting features" ALIGN CENTER, "Value".
 USING mapunit "_" REPEAT, "_" REPEAT, "_" REPEAT, "_" REPEAT.
 USING mapunit "","","","".
END SECTION.

SECTION mapunit WHEN FIRST OF musym
 DATA
 USING mapunit mu_lead.
END SECTION.

SECTION ratings
 KEEP WITH mapunit, ratings
 DATA
#---------------edited----------------------
 if not all (rate_reason == "" or isnull (rate_reason))
 USING component soilnm INDENT -1 PAD "-" SUPPRESS DUPLICATES by coiid,

#---------------------------------------
 comppct_r ALIGN CENTER SUPPRESS DUPLICATES by coiid,
 rate_reason,
 fuzznum.
END SECTION.

SECTION WHEN LAST OF coiid
 KEEP WITH ratings
 DATA
 USING mapunit.
END SECTION.

SECTION WHEN LAST OF liid
 DATA
 USING mapunit "_" REPEAT, "_" REPEAT, "_" REPEAT, "_" REPEAT.
 NEW PAGE.
END SECTION.

NASIS SQL GUIDE

102
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

MANU - Sewage Disposal html

BASE TABLE component.

INTERPRET "NSSC Pangaea": "ENG - Septic Tank Absorption Fields", #page 49
 "NSSC Pangaea": "ENG - Sewage Lagoons"
 MAX RULEDEPTH 1
 MAX REASONS 5
 AGGREGATE CROSSTAB BY PrimaryRuleInterpRuleName
 VALUES ("ENG - Septic Tank Absorption Fields", "ENG - Sewage Lagoons")
 LABELS "Septic Tanks", "Sewage Lagoons"
 CELLS RatingValueHighRV, InterpRuleDepth, RatingClassNameHighRV.

EXEC SQL
SELECT areaname, legenddesc, liid, musym, lmapunitiid, lmapunit.seqnum,
 compname, component.seqnum, comppct_r, coiid, localphase
FROM real area, legend, lmapunit, mapunit, correlation, datamapunit, component
WHERE join area to legend and
 join legend to lmapunit and
 join lmapunit to mapunit and
 join mapunit to correlation and
 join correlation to datamapunit and
 repdmu=1 and
 join datamapunit to component ;
SORT BY liid, lmapunit.seqnum, musym SYM, component.seqnum, comppct_r DESC,
 compname, coiid.

DEFINE mu_lead CLIP(musym) || ":".
DEFINE space INITIAL "".
DEFINE soilnm SECASE (ISNULL(localphase) ? compname : compname||", "||localphase).

Toggle a shading type for alternating components
DEFINE toggle IF NEW (lmapunitiid) THEN 0
 ELSE IF NEW(coiid) THEN 1-toggle

ELSE toggle.
DEFINE shading IF toggle == 1 THEN "odd" ELSE "even".

Format fuzzy rating value to avoid rounding off number close to 0 and 1.

DEFINE flag NEW(coiid) ? RatingClassNameHighRV : flag.

DEFINE fuzznum ((flag matches "Not rated*" or flag matches "Not Rated*") or
 (InterpRuleDepth == 0)) ? "" :
 RatingValueHighRV > 0.00 and RatingValueHighRV <= 0.005 ? "0.01" :
 RatingValueHighRV >= 0.99 and RatingValueHighRV < 1.00 ? "0.99" :
 sprintf("%.2f", RatingValueHighRV).

NASIS SQL GUIDE

103
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

DEFINE rate_reason InterpRuleDepth > 0 and (flag matches "Not rated*" or
 flag matches "Not Rated*") ? "" : RatingClassNameHighRV.

Indent value is used to select the proper indentation for reasons.
DEFINE class sprintf ("reason%.f", InterpRuleDepth).

TEMPLATE head1
 ELEMENT "tr"
 FIELD TAG "td" ATTRIB ("rowspan", "2"),
 FIELD TAG "td" ATTRIB ("rowspan", "2"),
 ARRAY (FIELD TAG "td" ATTRIB ("colspan", "2")

ATTRIB ("class", "begindatagroup enddatagroup")).

TEMPLATE head2
 ELEMENT "tr"
 ARRAY (FIELD TAG "td" ATTRIB("class", "begindatagroup"),
 FIELD TAG "td" ATTRIB("class", "enddatagroup")).

TEMPLATE mapunit
 ELEMENT "tr" ATTRIB ("class", "mapunit")
 FIELD TAG "td" VALUETAG "para" ATTRIB ("role", "mu-name"),
 space TAG "td",
 ARRAY (space TAG "td" ATTRIB("class", "begindatagroup"),
 space TAG "td" ATTRIB("class", "enddatagroup")).

TEMPLATE component
 ELEMENT "tr" ATTRIB ("class", shading)
 FIELD TAG "td" VALUETAG "para" ATTRIB ("role", "comp-name"),
 FIELD TAG "td" VALUETAG "para" ATTRIB ("role", "number"),
 ARRAY (FIELD TAG "td" ATTRIB("class", "begindatagroup") VALUETAG "para" ATTRIB ("role",
class),

FIELD TAG "td" ATTRIB("class", "enddatagroup") VALUETAG "para" ATTRIB ("role", "number")).

SECTION WHEN AT START
Produces report title.
DATA
 ELEMENT OPEN "section" ATTRIB ("label", "SoilReport").
 ELEMENT "title" "Sewage Disposal Interpretations".
END SECTION.

SECTION WHEN FIRST OF liid
Produces the survey area name and table headings
DATA
 ELEMENT OPEN "table".
 ELEMENT "title" areaname.
 ELEMENT OPEN "thead".

NASIS SQL GUIDE

104
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 USING head1
 "Map symbol and soil name",
 "Pct. of map unit",
 PrimaryRuleInterpRuleName.
 USING head2
 "Rating class and limiting features", "Value".
 ELEMENT CLOSE "thead".
 ELEMENT OPEN "tbody".
END SECTION.

SECTION mapunit WHEN FIRST OF lmapunitiid
Produces one line with the mapunit symbol
DATA
 USING mapunit mu_lead.
END SECTION.

SECTION ratings
Produces output for a component. First line has component name and interp ratings.
Additonal lines are produced as needed for reasons.
DATA
 IF NOT ALL (rate_reason == "" OR ISNULL (rate_reason))

USING component
soilnm SUPPRESS DUPLICATES by coiid,
comppct_r SUPPRESS DUPLICATES by coiid,
rate_reason,
fuzznum.

END SECTION.

SECTION WHEN LAST OF liid
Closes the table
DATA
 ELEMENT CLOSE "tbody".
 ELEMENT CLOSE "table".
END SECTION.

SECTION WHEN AT END
Closes the document.
DATA
 ELEMENT CLOSE "section".
END SECTION.

NASIS SQL GUIDE

105
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

HTML Reports
HTML output style has no concept of a “page”, so page layout features, such as KEEP and HEADING, are
ignored. Be sure to identify the width and length as unlimited.

PAGE LENGTH UNLIMITED WIDTH UNLIMITED.

HTML output is produced with the ELEMENT command. A report cannot use both ELEMENT and AT
commands. An ELEMENT always has a name, and may also have attributes and content:
Three options exist

TAG (Tags surround the whole data set),
VALUE TAG (VALUE TAG surrounds a single data value),
ATTRIB (for use with additional attributes).

HTML elements
An element in HTML represents some kind of structure or semantics and generally consists of a start tag,
content, and an end tag. The following is a paragraph element:

<p>
This is the content of the paragraph element.
</p>

A plain ELEMENT command produces both the opening and closing tags. Sometimes it is not possible to
put all the content you want into a single ELEMENT command, the ELEMENT OPEN “name” can be used
to produce just the opening tag. For each ELEMENT OPEN there must have a matching ELEMENT CLOSE.
Later in the report script there must be ELEMENT CLOSE “name” to produce the closing tag.

HTML tags
Tags are used to mark up the start and end of an HTML element.
A start tag consists of an opening angle bracket (<) followed by the element name, zero or more space
separated attribute/value pairs, and a closing angle bracket (>).

A start tag with no attributes:
<p>

A start tag with an attribute:

<p class="info">

End tags consist of an opening angle bracket followed by a forward slash, the element name,
and a closing angle bracket:

</p>

There are also some elements that are empty, meaning that they only consist of a single tag and
do not have any content. In HTML, such tags look just like opening tags:

HTML Value Tags
Value tags are used to mark up one field at a time.

HTML attributes

http://www.answers.com/angle+bracket

NASIS SQL GUIDE

106
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

An attribute defines a property for an element, consists of an attribute/value pair, and appears within
the element’s start tag. An element’s start tag may contain any number of space separated
attribute/value pairs. The most popular misuse of the term “tag” is referring to alt attributes as “alt
tags”. There is no such thing in HTML. Alt is an attribute, not a tag.

In most cases the TAG is used to define the structure of the report and the ATTRIB is used to define the
style.

An element name must correspond with a standard HTML tag (table in Appendix) for the type of output
to produce. Many HTML tags have standard attributes that modify the output appearance. For
example, a table can have borders drawn between cells with a tag like <table border=“1”>. In a NASIS
report this is written as ELEMENT “table” ATTRIB(“border”, “1”).

To produce reports that look like Web Soil Survey reports, use the elements and attributes listed in the
appendix for the DocBook HTML standard. This is converted automatically to HTML for displaying in a
web browser. If you are familiar with HTML you can use regular HTML tags as NASIS elements instead of
DocBook HTML.

The standard format for ATTRIB is ATTRIB(“style”, “color:#FF0000”).
If you want to use special character the SPECIAL term must be applied

EXAMPLE:

textdata TAG “p” SPECIAL.

Every HTML output report needs to be started and ended with two tags and are usually in a section with
an AT START and AT END condition.

EXAMPLE:
ELEMENT “p” ATTRIB (“class”, “subhead”) musym, “: “, muname.
ELEMENT “tr” musym TAG “td”, muname TAG “td” ATTRIB (“class” “namecol”).

TEMPLATE row2 ELEMENT “tr” FIELD TAG “td”, FIELD TAG “td” VALUETAG “p” ATTRIB (“class”
“namecol”).

USING row2 compname, hzname.

Document sections
Another related term is “section”. An HTML document is divided into a “head” section (the contents of
the head element) and a “body” section (the contents of the body element). Here are three simple
guidelines for markup syntax:

• Use lowercase for all element and attribute names.
• Explicitly include all start and end tags, including the optional tags.
• Quote all attribute values, use double-quoted syntax, and do not use any whitespace around the

equals sign: name="value".
The link below give the complete list of properties for attribute values
http://www.w3.org/TR/CSS21/propidx.html

http://www.w3.org/TR/html5/syntax.html#optional-tags
http://www.w3.org/TR/CSS21/propidx.html

NASIS SQL GUIDE

107
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

HTML Examples

Each report will typically have three sections, an opening, main and closing section.

SECTION WHEN AT START
ELEMENT OPEN “HTML”.
ELEMENT OPEN “BODY”.
END SECTION.

SECTION
DATA
Main body of data or table…….
END SECTION.

SECTION WHEN AT END
ELEMENT CLOSE “BODY”.
ELEMENT CLOSE “HTML”.
END SECTION.

Open a HTML page align the header and color the background

SECTION WHEN AT START
DATA
ELEMENT OPEN "HTML".
ELEMENT OPEN "body" ATTRIB("style", "background-color:#DCDCDC").
ELEMENT OPEN "h2" ATTRIB ("align", "center") "This report make over 200 checks on the data.".
ELEMENT CLOSE "h2".

Add blank line

ELEMENT "br".

Create a header

SECTION WHEN AT START
DATA
ELEMENT OPEN "h4" "Summary of RV horizon data".
ELEMENT CLOSE "h4".

Multiple sytles in Attribute separated by “;”

ATTRIB("style", "color:#DCDCDC;font:12")

Color a heading

ELEMENT OPEN "h3" ATTRIB ("style", "color:FF0000") "Red text indicates critical errors.".
ELEMENT CLOSE "h3".

Create table with border

NASIS SQL GUIDE

108
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ELEMENT OPEN "table" ATTRIB("border", "3"). Open table with border
ELEMENT "tr" ATTRIB ("class", "heading")

"Hzname" TAG "td" ATTRIB ("class", "begindatagroup") VALUETAG "h4" ,
"Horizon" TAG "td" VALUETAG "h4",
"Texture" TAG "td" VALUETAG "h4",
"Bulk" TAG "td" VALUETAG "h4" ATTRIB ("class", "enddatagroup").

ELEMENT "tr" ATTRIB ("class", "heading")
 "" TAG "td" ATTRIB ("class", "begindatagroup") VALUETAG "h4" ,
 "Depth" TAG "td" VALUETAG "h4",
 "" TAG "td" VALUETAG "h4",
 "Density" TAG "td" VALUETAG "h4" ATTRIB ("class", "enddatagroup").

SECTION
data
 ELEMENT "tr"
 hzname TAG "td" ATTRIB ("class", "begindatagroup") VALUETAG "h4",
 hzdepth TAG "td" VALUETAG "h4",
 texture TAG "td" VALUETAG "h4",
 dbthirdbar_r TAG "td"ATTRIB ("class", "enddatagroup") VALUETAG "h4".
end SECTION.

Set the report name and initial header

SECTION WHEN AT START
DATA
ELEMENT OPEN "SECTION" ATTRIB ("label", "SoilReport").
ELEMENT OPEN "table".
ELEMENT OPEN "thead".
USING basic "State", "Office", "Project Name", "mukey", "Nationalsym.

ELEMENT CLOSE "thead".
ELEMENT OPEN "tbody".
END SECTION.

Define a point location for plotting

DEFINE y 490-(477*(claytotal_r)*0.01).
DEFINE x 580-577*(sandtotal_r)*0.01-(0.5*(claytotal_r)*555*0.01).
DEFINE y1 y||" px".
DEFINE x1 x||" px".
DEFINE p12 "position:absolute;left:"||x1||";top:"||y1||";color:3366FF".

Display point location identified above

SECTION when c1==1
data
ELEMENT OPEN "h3" ATTRIB ("style", p12) "x".
ELEMENT CLOSE "h3".
end SECTION.
add a point as a bullet (special character)

NASIS SQL GUIDE

109
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

ELEMENT OPEN "h1" ATTRIB("style",p1)"•" Special.
ELEMENT CLOSE "h1".

Create a table box with different attributes

IF counter==1 ELEMENT "tr" hzname TAG "td" ATTRIB("height", “10px”) ATTRIB("width", "75px")
ATTRIB ("bgcolor", "#3E1F0F").

Open osd page with concatenated soil name
DEFINE osd1 "http://www2.ftw.nrcs.usda.gov/osd/dat/"||fl1||"/"||name1||".html".

SECTION when at start
data
ELEMENT OPEN "a" Attrib("href",osd1) Attrib("target", "_blank") "VISIT OSD SITE".
ELEMENT CLOSE "a".
end SECTION.

Create a link in an rectangle area of the report

ELEMENT OPEN "img"
ATTRIB("src","https://nrcs.sc.egov.usda.gov/ssra/nssc/Projects/NASIS/triangle.jpg") ATTRIB

("traget", "_blank") ATTRIB ("alt","'NASIS site link broken'") ATTRIB ("width", "600") ATTRIB ("height",
"536") ATTRIB ("usemap","#texture").

ELEMENT CLOSE "img".
ELEMENT OPEN "map" ATTRIB ("name", "texture")ATTRIB ("style","color:blue").
ELEMENT OPEN "area" ATTRIB ("Shape", "rect") ATTRIB("coords","200,200,300,300") ATTRIB ("alt",

"plot ranges")
ATTRIB ("href",

"https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB-
plot%20texture%20with%20ranges%20one%20horizon&chiid2=3609432") ATTRIB ("target",
"_blank") ATTRIB("style","background-color:#B2FF99").

ELEMENT CLOSE "area".
ELEMENT CLOSE "map".

Create a email link

ELEMENT OPEN "a"
ATTRIB("href","mailto:kevin.godsey@mo.usda.gov?Subject=Error%20in%20report") "PLEASE SEND
ERRORS BY CLICKING HERE".

ELEMENT CLOSE "a".

Add a picture to your report

ELEMENT OPEN "img"
ATTRIB("src","https://nrcs.sc.egov.usda.gov/ssra/nssc/Projects/NASIS/triangle.jpg") ATTRIB ("traget",
"_blank") ATTRIB ("alt","'NASIS site link broken'") ATTRIB ("width", "600px") ATTRIB ("height", "536px").

ELEMENT CLOSE "img".

Create a main report to open sub-reports

NASIS SQL GUIDE

110
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

SECTION
DATA
ELEMENT OPEN "html".
ELEMENT OPEN "body".
INCLUDE "MLRA16_Office":"HTML-plot texture on triangle".
ELEMENT "br". Line break
ELEMENT OPEN "p" "IF THE POINTS DO NOT PLOT CORRECTLY, RESET YOU DISPLAY.".
ELEMENT CLOSE "p".
ELEMENT OPEN "p" "THE ORIGINAL DISPAY WAS SET TO 1920 BY 1080 ON A DUAL SCREEN.".
ELEMENT CLOSE "p".
INCLUDE "MLRA16_Office":"HTML-texture summary".
INCLUDE "MLRA16_Office":"HTML-rock summary".
INCLUDE "MLRA16_Office":"HTML-DMU description".
INCLUDE "MLRA16_Office":"HTML-Mini profile description".
INCLUDE "MLRA16_Office":"HTML-plot profile".
ELEMENT CLOSE "body".
ELEMENT CLOSE "html".
end SECTION.

Make a web link

ELEMENT OPEN "a" ATTRIB("href", "ftp://ftp-fc.sc.egov.usda.gov/NSSC/GDS/GDS_v4_11.pdf")
"GEOMORPHIC DESCRIPTION SYSTEM".

ELEMENT CLOSE "a".

Create a heading with message for no data

SECTION WHEN NO DATADATA
ELEMENT OPEN h2" “If this message is displayed, critical data is missing for the description".
ELEMENT CLOSE "h2".
END SECTION.

NASIS SQL GUIDE

111
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

HTML Report Format Rules
KEEP option for SECTION is ignored in HTML output

“p” vs “pre” p by its self is a nonformatted paragraph; all spaces, indentations, page breaks etc are
ignored. The paragraph will alter its shape based on the size of the html window. “PRE” retains the
formatting of the paragraph. So white spaces can be inserted before a word to separate two sections on
the same line.

When using the default output the columns are in the order of the select list.

“Tr” stands for table row and
“Td” stands for table data or cell data.

Be careful in using an INPUT file for data needed to aggregate columns that are not unique with the
column specification of “none” or duplicates will be eliminated.

Regroup errors cannot regroup because two columns are of different lengths. Usually due to not
aggregating the data and duplicates are turned to null.

Column specifications coded values need “-“dashes while other values can be separated with “,”
commas.

When creating parameters the term ‘IN” will create check boxes and is used with multiple choice lists.
the “=” sign is used for comparing only one value.
Group by and Having cannot use aliases they have to be NASIS table names.

The term special is used to change a special character to its form. The example below changes the
charater “•” to a bullet in the output.
EXAMPLE

element OPEN "h1" ATTRIb("style",p1)"•" Special.

Example of some of the codes: complete list can be found on many internet sites; look for html special
codes.

–
—
‘
’
‚
“
”
„
†
‡
•

…
‰
€
™

–
—
‘
’
‚
“
”
„
†
‡
•
…
‰
€
™

NASIS SQL GUIDE

112
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

APPENDIX html formatting
The first table below identifies Element that are used with the WSS reports for standardization of
output; the second table are standard HTML tags and the third table are color option values.

ELEMENTS

Element Attribute

Name
Attribute Value Meaning

”section” “label” “SoilReport” Required to identify the outermost
section of a soil report

 ”Survey_Area” Data for one survey area. The title of
the section is the survey area name.
Used in reports that don’t have tables.

 ”Map_Unit_Description
”

Data for one mapunit in a map unit
description report.

 others The Map Unit Description report has
labels to signify the type of data in
each section, but they are currently
ignored by the formatting program,

”title” ”role” ”suppressTitle” Do not display a title for the current
section. Although the <title> element
is required in a <section>, this will
suppress display of the title.

”table” ”orient” ”land” Table is wide and should be displayed
in landscape orientation.

“col” “width” “n*” Relative column width expressed as a
number followed by an asterisk. A
column with width “3*” is 3 times as
wide as a column with width “1*”. The
exact width of a column depends on
the overall width of the table and
width of the other columns.

”tr” ”class” ”mapunit” A table row that begins the data for a
map unit.

 ”even” A table row that can be shaded in
alternating colors to improve
readability. Alternates with “odd”.

 ”odd” A table row that can be shaded in
alternating colors to improve
readability. Alternates with “even”.

 ”interpdata” A table row containing data about an
interpretation in the Survey Area Data
Summary report.

 ”units” A table row containing units of
measure. It is a type of subheading for

NASIS SQL GUIDE

113
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

the table

”td” ”rowspan” a number Number of rows in the heading
occupied by this cell. Part of standard
HTML tables.

 “colspan” a number Number of columns in the heading
occupied by this cell. Part of standard
HTML tables.

 “class” “begindatagroup” Cell is the first of a group of cells that
are set off visually by a heavier vertical
border on the left edge.

 “enddatagroup” Cell is the last of a group of cells that
are set off visually by a heavier vertical
border on the right edge.

 “datetime” Cell contains a date/time field that
should be formatted according to the
date conventions for the report.

“para” “role” “mu-name” Content is a mapunit symbol or name.
 “comp-name” Content is a component name.
 “number” Numeric data, normally displayed

right justified in a cell.
 “class-name” Non-numeric data, such as a class

name, normally displayed centered in
a cell.

 “hang-list” Multiple values of character type data
which are displayed in a vertical list
with hanging indents

 “preservenewlines” Content is a text field that may include
newlines, tabs, and significant spaces.
Normally this “white space” is
removed. This attribute will preserve
the layout of the original text.

NASIS SQL GUIDE

114
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

 TAGS
Tag Description

<!--...--> Defines a comment

<!DOCTYPE> Defines the document type

<a> Defines an anchor

<abbr> Defines an abbreviation

<acronym> Defines an acronym

<address> Defines contact information for the author/owner of a document

<area /> Defines an area inside an image-map

 Defines bold text

<base /> Defines a default address or a default target for all links on a page

<bdo> Defines the text direction

<big> Defines big text

<blockquote> Defines a long quotation

<body> Defines the document's body

 Defines a single line break

<button> Defines a push button

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<col /> Defines attribute values for one or more columns in a table

<colgroup> Defines a group of columns in a table for formatting

<dd> Defines a description of a term in a definition list

 Defines deleted text

<dfn> Defines a definition term

<div> Defines a section in a document

<dl> Defines a definition list

<dt> Defines a term (an item) in a definition list

 Defines emphasized text

<fieldset> Defines a border around elements in a form

<form> Defines an HTML form for user input

<frame /> Defines a window (a frame) in a frameset

<frameset> Defines a set of frames

<h1> to <h6> Defines HTML headings

<head> Defines information about the document

<hr /> Defines a horizontal line

<html> Defines an HTML document

<i> Defines italic text

<iframe> Defines an inline frame

 Defines an image

<input /> Defines an input control

<ins> Defines inserted text

http://www.w3schools.com/tags/tag_comment.asp
http://www.w3schools.com/tags/tag_doctype.asp
http://www.w3schools.com/tags/tag_a.asp
http://www.w3schools.com/tags/tag_abbr.asp
http://www.w3schools.com/tags/tag_acronym.asp
http://www.w3schools.com/tags/tag_address.asp
http://www.w3schools.com/tags/tag_area.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_base.asp
http://www.w3schools.com/tags/tag_bdo.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_blockquote.asp
http://www.w3schools.com/tags/tag_body.asp
http://www.w3schools.com/tags/tag_br.asp
http://www.w3schools.com/tags/tag_button.asp
http://www.w3schools.com/tags/tag_caption.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_col.asp
http://www.w3schools.com/tags/tag_colgroup.asp
http://www.w3schools.com/tags/tag_dd.asp
http://www.w3schools.com/tags/tag_del.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_div.asp
http://www.w3schools.com/tags/tag_dl.asp
http://www.w3schools.com/tags/tag_dt.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_fieldset.asp
http://www.w3schools.com/tags/tag_form.asp
http://www.w3schools.com/tags/tag_frame.asp
http://www.w3schools.com/tags/tag_frameset.asp
http://www.w3schools.com/tags/tag_hn.asp
http://www.w3schools.com/tags/tag_head.asp
http://www.w3schools.com/tags/tag_hr.asp
http://www.w3schools.com/tags/tag_html.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_iframe.asp
http://www.w3schools.com/tags/tag_img.asp
http://www.w3schools.com/tags/tag_input.asp
http://www.w3schools.com/tags/tag_ins.asp

NASIS SQL GUIDE

115
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

<kbd> Defines keyboard text

<label> Defines a label for an input element

<legend> Defines a caption for a fieldset element

 Defines a list item

<link /> Defines the relationship between a document and an external resource

<map> Defines an image-map

<meta /> Defines metadata about an HTML document

<noframes> Defines an alternate content for users that do not support frames

<noscript> Defines an alternate content for users that do not support client-side scripts

<object> Defines an embedded object

 Defines an ordered list

<optgroup> Defines a group of related options in a select list

<option> Defines an option in a select list

<p> Defines a paragraph

<param /> Defines a parameter for an object

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code

<script> Defines a client-side script

<select> Defines a select list (drop-down list)

<small> Defines small text

 Defines a section in a document

 Defines strong text

<style> Defines style information for a document

<sub> Defines subscripted text

<sup> Defines superscripted text

<table> Defines a table

<tbody> Groups the body content in a table

<td> Defines a cell in a table

<textarea> Defines a multi-line text input control

<tfoot> Groups the footer content in a table

<th> Defines a header cell in a table

<thead> Groups the header content in a table

<title> Defines the title of a document

<tr> Defines a row in a table

<tt> Defines teletype text

 Defines an unordered list

<var> Defines a variable part of a text

http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_label.asp
http://www.w3schools.com/tags/tag_legend.asp
http://www.w3schools.com/tags/tag_li.asp
http://www.w3schools.com/tags/tag_link.asp
http://www.w3schools.com/tags/tag_map.asp
http://www.w3schools.com/tags/tag_meta.asp
http://www.w3schools.com/tags/tag_noframes.asp
http://www.w3schools.com/tags/tag_noscript.asp
http://www.w3schools.com/tags/tag_object.asp
http://www.w3schools.com/tags/tag_ol.asp
http://www.w3schools.com/tags/tag_optgroup.asp
http://www.w3schools.com/tags/tag_option.asp
http://www.w3schools.com/tags/tag_p.asp
http://www.w3schools.com/tags/tag_param.asp
http://www.w3schools.com/tags/tag_pre.asp
http://www.w3schools.com/tags/tag_q.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_script.asp
http://www.w3schools.com/tags/tag_select.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_span.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_style.asp
http://www.w3schools.com/tags/tag_sup.asp
http://www.w3schools.com/tags/tag_sup.asp
http://www.w3schools.com/tags/tag_table.asp
http://www.w3schools.com/tags/tag_tbody.asp
http://www.w3schools.com/tags/tag_td.asp
http://www.w3schools.com/tags/tag_textarea.asp
http://www.w3schools.com/tags/tag_tfoot.asp
http://www.w3schools.com/tags/tag_th.asp
http://www.w3schools.com/tags/tag_thead.asp
http://www.w3schools.com/tags/tag_title.asp
http://www.w3schools.com/tags/tag_tr.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_ul.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp

NASIS SQL GUIDE

116
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

COLOR CODING

AliceBlue #F0F8FF

AntiqueWhite #FAEBD7

Aqua #00FFFF

Aquamarine #7FFFD4

Azure #F0FFFF

Beige #F5F5DC

Bisque #FFE4C4

Black #000000

BlanchedAlmond #FFEBCD

Blue #0000FF

BlueViolet #8A2BE2

Brown #A52A2A

BurlyWood #DEB887

CadetBlue #5F9EA0

Chartreuse #7FFF00

Chocolate #D2691E

Coral #FF7F50

CornflowerBlue #6495ED

Cornsilk #FFF8DC

Crimson #DC143C

Cyan #00FFFF

DarkBlue #00008B

DarkCyan #008B8B

DarkGoldenRod #B8860B

DarkGray #A9A9A9

DarkGrey #A9A9A9

DarkGreen #006400

DarkKhaki #BDB76B

DarkMagenta #8B008B

DarkOliveGreen #556B2F

Darkorange #FF8C00

DarkOrchid #9932CC

DarkRed #8B0000

DarkSalmon #E9967A

DarkSeaGreen #8FBC8F

DarkSlateBlue #483D8B

DarkSlateGray #2F4F4F

DarkSlateGrey #2F4F4F

http://www.w3schools.com/tags/ref_color_tryit.asp?color=AliceBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F0F8FF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=AntiqueWhite
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FAEBD7
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Aqua
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00FFFF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Aquamarine
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=7FFFD4
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Azure
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F0FFFF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Beige
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F5F5DC
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Bisque
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFE4C4
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Black
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=000000
http://www.w3schools.com/tags/ref_color_tryit.asp?color=BlanchedAlmond
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFEBCD
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Blue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=0000FF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=BlueViolet
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=8A2BE2
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Brown
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=A52A2A
http://www.w3schools.com/tags/ref_color_tryit.asp?color=BurlyWood
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=DEB887
http://www.w3schools.com/tags/ref_color_tryit.asp?color=CadetBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=5F9EA0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Chartreuse
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=7FFF00
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Chocolate
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=D2691E
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Coral
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF7F50
http://www.w3schools.com/tags/ref_color_tryit.asp?color=CornflowerBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=6495ED
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Cornsilk
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFF8DC
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Crimson
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=DC143C
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Cyan
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00FFFF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00008B
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkCyan
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=008B8B
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkGoldenRod
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=B8860B
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkGray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=A9A9A9
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkGrey
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=A9A9A9
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=006400
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkKhaki
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=BDB76B
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkMagenta
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=8B008B
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkOliveGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=556B2F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Darkorange
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF8C00
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkOrchid
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=9932CC
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkRed
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=8B0000
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkSalmon
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=E9967A
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkSeaGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=8FBC8F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkSlateBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=483D8B
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkSlateGray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=2F4F4F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkSlateGrey
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=2F4F4F

NASIS SQL GUIDE

117
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

DarkTurquoise #00CED1

DarkViolet #9400D3

DeepPink #FF1493

DeepSkyBlue #00BFFF

DimGray #696969

DodgerBlue #1E90FF

FireBrick #B22222

FloralWhite #FFFAF0

ForestGreen #228B22

Fuchsia #FF00FF

Gainsboro #DCDCDC

GhostWhite #F8F8FF

Gold #FFD700

GoldenRod #DAA520

Gray #808080

Grey #808080

Green #008000

GreenYellow #ADFF2F

HoneyDew #F0FFF0

HotPink #FF69B4

IndianRed #CD5C5C

Indigo #4B0082

Ivory #FFFFF0

Khaki #F0E68C

Lavender #E6E6FA

LavenderBlush #FFF0F5

LawnGreen #7CFC00

LemonChiffon #FFFACD

LightBlue #ADD8E6

LightCoral #F08080

LightCyan #E0FFFF

LightGoldenRodYellow #FAFAD2

LightGray #D3D3D3

LightGrey #D3D3D3

LightGreen #90EE90

LightPink #FFB6C1

LightSalmon #FFA07A

LightSeaGreen #20B2AA

LightSkyBlue #87CEFA

http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkTurquoise
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00CED1
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DarkViolet
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=9400D3
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DeepPink
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF1493
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DeepSkyBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00BFFF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DimGray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=696969
http://www.w3schools.com/tags/ref_color_tryit.asp?color=DodgerBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=1E90FF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=FireBrick
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=B22222
http://www.w3schools.com/tags/ref_color_tryit.asp?color=FloralWhite
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFAF0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=ForestGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=228B22
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Fuchsia
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF00FF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Gainsboro
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=DCDCDC
http://www.w3schools.com/tags/ref_color_tryit.asp?color=GhostWhite
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F8F8FF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Gold
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFD700
http://www.w3schools.com/tags/ref_color_tryit.asp?color=GoldenRod
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=DAA520
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Gray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=808080
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Grey
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=808080
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Green
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=008000
http://www.w3schools.com/tags/ref_color_tryit.asp?color=GreenYellow
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=ADFF2F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=HoneyDew
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F0FFF0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=HotPink
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF69B4
http://www.w3schools.com/tags/ref_color_tryit.asp?color=IndianRed%20
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=CD5C5C
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Indigo%20%20
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=4B0082
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Ivory
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFFF0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Khaki
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F0E68C
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Lavender
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=E6E6FA
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LavenderBlush
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFF0F5
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LawnGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=7CFC00
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LemonChiffon
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFACD
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=ADD8E6
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightCoral
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F08080
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightCyan
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=E0FFFF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightGoldenRodYellow
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FAFAD2
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightGray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=D3D3D3
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightGrey
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=D3D3D3
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=90EE90
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightPink
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFB6C1
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightSalmon
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFA07A
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightSeaGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=20B2AA
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightSkyBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=87CEFA

NASIS SQL GUIDE

118
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

LightSlateGray #778899

LightSlateGrey #778899

LightSteelBlue #B0C4DE

LightYellow #FFFFE0

Lime #00FF00

LimeGreen #32CD32

Linen #FAF0E6

Magenta #FF00FF

Maroon #800000

 MediumAquaMarine #66CDAA

MediumBlue #0000CD

MediumOrchid #BA55D3

MediumPurple #9370D8

MediumSeaGreen #3CB371

MediumSlateBlue #7B68EE

 MediumSpringGreen #00FA9A

MediumTurquoise #48D1CC

MediumVioletRed #C71585

MidnightBlue #191970

MintCream #F5FFFA

MistyRose #FFE4E1

Moccasin #FFE4B5

NavajoWhite #FFDEAD

Navy #000080

OldLace #FDF5E6

Olive #808000

OliveDrab #6B8E23

Orange #FFA500

OrangeRed #FF4500

Orchid #DA70D6

PaleGoldenRod #EEE8AA

PaleGreen #98FB98

PaleTurquoise #AFEEEE

PaleVioletRed #D87093

PapayaWhip #FFEFD5

PeachPuff #FFDAB9

Peru #CD853F

Pink #FFC0CB

Plum #DDA0DD

http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightSlateGray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=778899
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightSlateGrey
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=778899
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightSteelBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=B0C4DE
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LightYellow
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFFE0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Lime
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00FF00
http://www.w3schools.com/tags/ref_color_tryit.asp?color=LimeGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=32CD32
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Linen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FAF0E6
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Magenta
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF00FF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Maroon
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=800000
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumAquaMarine
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=66CDAA
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=0000CD
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumOrchid
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=BA55D3
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumPurple
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=9370D8
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumSeaGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=3CB371
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumSlateBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=7B68EE
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumSpringGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00FA9A
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumTurquoise
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=48D1CC
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MediumVioletRed
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=C71585
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MidnightBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=191970
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MintCream
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F5FFFA
http://www.w3schools.com/tags/ref_color_tryit.asp?color=MistyRose
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFE4E1
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Moccasin
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFE4B5
http://www.w3schools.com/tags/ref_color_tryit.asp?color=NavajoWhite
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFDEAD
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Navy
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=000080
http://www.w3schools.com/tags/ref_color_tryit.asp?color=OldLace
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FDF5E6
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Olive
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=808000
http://www.w3schools.com/tags/ref_color_tryit.asp?color=OliveDrab
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=6B8E23
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Orange
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFA500
http://www.w3schools.com/tags/ref_color_tryit.asp?color=OrangeRed
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF4500
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Orchid
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=DA70D6
http://www.w3schools.com/tags/ref_color_tryit.asp?color=PaleGoldenRod
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=EEE8AA
http://www.w3schools.com/tags/ref_color_tryit.asp?color=PaleGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=98FB98
http://www.w3schools.com/tags/ref_color_tryit.asp?color=PaleTurquoise
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=AFEEEE
http://www.w3schools.com/tags/ref_color_tryit.asp?color=PaleVioletRed
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=D87093
http://www.w3schools.com/tags/ref_color_tryit.asp?color=PapayaWhip
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFEFD5
http://www.w3schools.com/tags/ref_color_tryit.asp?color=PeachPuff
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFDAB9
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Peru
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=CD853F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Pink
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFC0CB
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Plum
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=DDA0DD

NASIS SQL GUIDE

119
Chapter 18: Understanding NASIS SQL

(Version 6, May 2012)

PowderBlue #B0E0E6

Purple #800080

Red #FF0000

RosyBrown #BC8F8F

RoyalBlue #4169E1

SaddleBrown #8B4513

Salmon #FA8072

SandyBrown #F4A460

SeaGreen #2E8B57

SeaShell #FFF5EE

Sienna #A0522D

Silver #C0C0C0

SkyBlue #87CEEB

SlateBlue #6A5ACD

SlateGray #708090

Snow #FFFAFA

SpringGreen #00FF7F

SteelBlue #4682B4

Tan #D2B48C

Teal #008080

Thistle #D8BFD8

Tomato #FF6347

Turquoise #40E0D0

Violet #EE82EE

Wheat #F5DEB3

White #FFFFFF

WhiteSmoke #F5F5F5

Yellow #FFFF00

YellowGreen #9ACD32

http://www.w3schools.com/tags/ref_color_tryit.asp?color=PowderBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=B0E0E6
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Purple
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=800080
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Red
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF0000
http://www.w3schools.com/tags/ref_color_tryit.asp?color=RosyBrown
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=BC8F8F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=RoyalBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=4169E1
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SaddleBrown
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=8B4513
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Salmon
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FA8072
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SandyBrown
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F4A460
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SeaGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=2E8B57
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SeaShell
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFF5EE
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Sienna
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=A0522D
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Silver
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=C0C0C0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SkyBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=87CEEB
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SlateBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=6A5ACD
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SlateGray
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=708090
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Snow
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFAFA
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SpringGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=00FF7F
http://www.w3schools.com/tags/ref_color_tryit.asp?color=SteelBlue
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=4682B4
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Tan
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=D2B48C
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Teal
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=008080
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Thistle
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=D8BFD8
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Tomato
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FF6347
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Turquoise
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=40E0D0
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Violet
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=EE82EE
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Wheat
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F5DEB3
http://www.w3schools.com/tags/ref_color_tryit.asp?color=White
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFFFF
http://www.w3schools.com/tags/ref_color_tryit.asp?color=WhiteSmoke
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=F5F5F5
http://www.w3schools.com/tags/ref_color_tryit.asp?color=Yellow
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=FFFF00
http://www.w3schools.com/tags/ref_color_tryit.asp?color=YellowGreen
http://www.w3schools.com/tags/ref_color_tryit.asp?hex=9ACD32

Suggested reading.

http://www.w3schools.com/xml/xml_whatis.asp

http://www.htmlhelp.com/reference/html40/

http://www.mountaindragon.com/html/tables.htm

http://www.htmlgoodies.com/

http://www.htmlcompendium.org/index.htm

The report scripting will be similar to writing NASIS reports, however the formatting of the reports is
using XML and HTML scripting. This will be new to many.

http://www.w3schools.com/xml/xml_whatis.asp
http://www.htmlhelp.com/reference/html40/
http://www.mountaindragon.com/html/tables.htm
http://www.htmlgoodies.com/
http://www.htmlcompendium.org/index.htm

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

121

Web URL reports
Any report in NASIS can be tweaked to work as a URL output through windows explore.

The output can be text format and is displayed in explorer window.
URL reports can be called with python scripts in ARCMAP and the data be incorporated with other
criteria.

The parameters are slightly different. The program cannot convert text to code so if a parameter is a
coded value you have to enter the code not the code name.

If the URL has the parameter identified with the ampersand (&) the report will run.
https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB-
Mapunits%20by%20area%20symbol&area_sym=MO123

If the URL report does not have a parameter identified it will open a parameter page with fill in boxes.

https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=Prime%20and%20
statewide%20soils%20by%20area%20and%20musym

These reports have to be in one of two folders in NASIS: NSSL and the NSSC Data folders.

NASIS 6 provides the ability to write reports in text, html or xml programming languages. The CVIR book
discusses the methods of writing using html and xml. This section will discuss the programming needs
for html report coding.

https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB-Mapunits%20by%20area%20symbol&area_sym=MO123
https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB-Mapunits%20by%20area%20symbol&area_sym=MO123
https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=Prime%20and%20statewide%20soils%20by%20area%20and%20musym
https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=Prime%20and%20statewide%20soils%20by%20area%20and%20musym

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

122

NHQ - Project Plans (all) by Soil Survey Office html

PARAMETER sso ELEMENT areasymbol PROMPT "Office Responsible e.g. 5-2".
BASE TABLE Project.

EXEC SQL
SELECT areasymbol, areaname, projectname, projectdesc, projectiid, stateresponsible
FROM REAL area
INNER JOIN REAL project by mlra_sso
LEFT OUTER JOIN REAL projectmilestone by default
LEFT OUTER JOIN REAL milestonetype by default
WHERE projectname matches "MLRA*"
and areasymbol matches sso ;
SORT BY stateresponsible, areasymbol, projectname
AGGREGATE ROWS by areaname, projectname.

EXEC SQL
SELECT liid, muiid, musym, muname, muacres
FROM REAL area muarea
INNER JOIN REAL project by mlra_sso
INNER JOIN REAL projectmapunit by default

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

123

INNER JOIN REAL mapunit by default
INNER JOIN REAL lmapunit by default
INNER JOIN REAL legend by default;
AGGREGATE COLUMN muiid NONE, muacres NONE.

DEFINE asum ARRAYSUM(muacres).
DEFINE dt TODAY.
DEFINE location areasymbol || ": " || areaname.
DEFINE title "MLRA - All Projects by MLRA Soil Survey Office Report".
DEFINE state CODENAME(stateresponsible).
TEMPLATE basic TAG "td" ELEMENT "tr" FIELD, FIELD, FIELD, FIELD, FIELD.

SECTION WHEN AT START #sets the report name and initial header
DATA
ELEMENT OPEN "section" ATTRIB ("label", "SoilReport"). #opens section
ELEMENT "title" title, " as of ", dt.
ELEMENT OPEN "table". #opens table
ELEMENT OPEN "thead". #opens table header
USING basic "State",
 "Office",
 "Project Name",
 "Project Acres",
 "Project Description" TAG "td" ATTRIB ("role", "center").
ELEMENT CLOSE "thead". #closes table header
ELEMENT OPEN "tbody". #opens table body
END SECTION.
SECTION #adds the data to the report
DATA
 USING basic
 state,
 areasymbol,
 projectname,
 asum,
 projectdesc.
END SECTION.
SECTION when at end #closes the report
DATA
ELEMENT CLOSE "tbody". #closes table body
ELEMENT CLOSE "table". #closes table
ELEMENT CLOSE "section". #closes section
END SECTION. #ends section

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

124

Exercises

Queries
Arithmetic

FROM area, legend, lmapunit, mapunit, correlation, data_mapunit, component, chorizon
WHERE area.area_symbol MATCHES ? AND
legend.soil_survey_area_status IN (?) AND
correlation.representative_dmu = "yes" AND
mapunit.mapunit_status != "additional" AND
component.major_component_flag IN (?) AND
((ROUND (sandvc_r + sandco_r + sandmed_r + sandfine_r + sandvf_r, 1)) != ROUND (sandtotal_r, 1)) AND
JOIN area TO legend AND
JOIN legend TO lmapunit AND
JOIN lmapunit to mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO data_mapunit AND
JOIN data_mapunit TO component AND
JOIN component TO chorizon

FROM chorizon, area, legend, component, correlation, areatype, mapunit, data_mapunit, lmapunit
WHERE area.areasymbol MATCHES ? "AREA SYMBOL eg. mo*" AND
mapunit.mapunit_status IN (?) AND areatypename matches "non-mlra*" and
correlation.representative_dmu = "yes" and
ABS(sandtotal_r-(sandvc_r+sandco_r+sandmed_r+sandfine_r+sandvf_r)) >0.09 and
JOIN areatype TO area AND
JOIN area TO legend AND
JOIN legend to lmapunit AND
JOIN lmapunit to mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO data_mapunit AND
JOIN data_mapunit TO component AND
JOIN component TO chorizon

Compare sieve to PSDA
FROM area, legend, lmapunit, mapunit, correlation, data_mapunit, component, chorizon
WHERE area.area_symbol MATCHES ? AND
mapunit.mapunit_status != "additional" AND
correlation.representative_dmu = 1 AND
component.component_name MATCHES ? AND
component.major_component_flag = 1 AND
sieveno200_r != ((sandvf_r/2) + silttotal_r + claytotal_r) and sandtotal_r is not null and
JOIN area TO legend AND
JOIN legend TO lmapunit AND
JOIN lmapunit to mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO data_mapunit AND
JOIN data_mapunit TO component AND
JOIN component TO chorizon

NOT EXISTS
FROM areatype, area, legend, mapunit, correlation, data_mapunit, component
WHERE area.area_symbol matches ? AND

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

125

legend.legend_suitability_for_use = "2" AND
mapunit.mapunit_status != "additional" AND
correlation.representative_dmu = "yes" AND
area_type_name = "Non-MLRA Soil Survey Area" AND
component.major_component_flag = "yes" AND
component.component_kind != "miscellaneous area" and
NOT EXISTS (SELECT * FROM component_parent_material, component_parent_material_grp WHERE JOIN component TO
component_parent_material_grp and join component_parent_material_grp to component_parent_material) and
JOIN areatype to area AND
JOIN area TO legend AND
JOIN legend TO mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO data_mapunit AND
JOIN data_mapunit to component

FROM chorizon, mapunit, corestrictions, area, component, areatype, legend, correlation, data_mapunit, lmapunit
WHERE areasymbol MATCHES ? "AREA SYMBOL eg. mo*" and
areatype.areatypename MATCHES "non-mlra*" and mapunit.mapunit_status IN (?) AND correlation.repdmu=1 and reskind IN
("bedrock, lithic") and hzname matches "*R*" and (hzdept_r!=resdept_r or hzdept_l!=resdept_l or hzdept_h!=resdept_h) and
Join area TO areatype and
JOIN area to legend and
JOIN legend to lmapunit AND
JOIN lmapunit to mapunit AND
join mapunit to correlation and
join correlation to data_mapunit and
join data_mapunit to component and
join component to chorizon and
join component to corestrictions

FROM chorizon, area, legend, mapunit, correlation, data_mapunit, component, areatype, lmapunit
WHERE area.area_symbol MATCHES ? "AREA SYMBOL eg. mo*" AND areatypename matches "non-mlra*" and
chorizon.horizon_depth_to_top_r = 0 AND
mapunit.mapunit_status IN (?) AND
JOIN area TO legend AND repdmu="yes" and
JOIN area to areatype and
JOIN legend to lmapunit AND
JOIN lmapunit to mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO data_mapunit AND
JOIN data_mapunit TO component AND
JOIN component TO chorizon AND
EXISTS (SELECT chorizon_iid_ref FROM chorizon_texture_group
WHERE JOIN chorizon TO chorizon_texture_group
GROUP BY chorizon_iid_ref
HAVING COUNT(*) > 1)

FROM pedon, site, nasisgroup, OUTER site_association_site, OUTER transect, siteobs
WHERE nasisgroup.grpname matches ? "group name" and
 pedon.pedon_type IN (?) AND
 JOIN pedon to siteobs and
 JOIN siteobs to site and
 JOIN pedon to nasisgroup AND
 JOIN pedon TO transect AND
 JOIN site TO site_association_site
and nasissite.nasissitename MATCHES ? and

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

126

JOIN pedon to nasissite

Reports

Exercise 2: multiple tables and SORT

EXEC SQL
SELECT nationalmusym, muname, dmudesc
FROM mapunit, correlation, datamapunit
WHERE JOIN mapunit TO correlation AND
JOIN correlation TO datamapunit;
SORT BY muname SYM.

Exercise 3

EXEC SQL
SELECT nationalmusym, muname, compname, comppct_r, repdmu
FROM mapunit, OUTER(correlation, datamapunit, component)
WHERE repdmu = 1 AND
JOIN mapunit TO correlation AND
JOIN correlation TO datamapunit AND
JOIN datamapunit to component;
SORT BY nationalmusym SYM, comppct_r DESC.

Exercise 5a

EXEC SQL
SELECT musym, muname, compname, comppct_r, repdmu
FROM legend, lmapunit, mapunit, OUTER(correlation, datamapunit, component)
WHERE repdmu = 1 AND
JOIN legend to lmapunit AND
JOIN lmapunit to mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO datamapunit AND
JOIN datamapunit to component;
SORT BY musym SYM, comppct_r DESC
AGGREGATE ROWS BY musym COLUMN compname NONE.

TEMPLATE dline SEPARATOR "|"
AT LEFT FIELD WIDTH 8, FIELD WIDTH 40, FIELD WIDTH 7, FIELD WIDTH 15, "".

SECTION
 HEADING
 AT LEFT "_" REPEAT WIDTH 74.
 USING dline.
 USING dline
 "Map Symbol" ALIGN CENTER,
 "Map Unit Name" ALIGN CENTER,
 "Comp %" ALIGN CENTER,
 "Component Name" ALIGN CENTER.
 USING dline "_" REPEAT, "_" REPEAT, "_" REPEAT, "_" REPEAT.

 DATA
 USING dline
 musym ALIGN RIGHT INDENT 1,
 muname INDENT -1,
 comppct_r INDENT -1,
 compname INDENT 1.

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

127

END SECTION.

Exercise 8a

BASE TABLE component.

 EXEC SQL
 SELECT musym, compname, comppct_r
 FROM legend, lmapunit, mapunit, correlation, datamapunit, component
 WHERE JOIN legend to lmapunit
 AND JOIN lmapunit to mapunit
 AND JOIN mapunit TO correlation
 AND JOIN correlation TO datamapunit
 AND JOIN datamapunit TO component
 AND repdmu = 1;
 SORT BY musym SYM, comppct_r DESC
 AGGREGATE ROWS BY musym COLUMN compname FIRST.

DERIVE shwt FROM rv USING "NSSC Pangaea" : "DEPTH TO HIGH WATER TABLE MINIMUM".

PAGE LENGTH UNLIMITED WIDTH UNLIMITED.

SECTION WHEN not isnull(shwt)
 DATA
 AT LEFT
 musym QUOTED WIDTH UNLIMITED,
 compname QUOTED WIDTH UNLIMITED SEPARATOR ",",
 shwt NO COMMA WIDTH UNLIMITED SEPARATOR ",".
END SECTION.

Exercise 14a

EXEC SQL
 select utransectid, soinmassamp, count(*) soilcount
 from REAL transect, REAL pedon
 WHERE utransectid matches "07905KS185-5910*" and join transect to pedon
 group by utransectid, soinmassamp;
 sort by utransectid, soinmassamp
 aggregate rows by utransectid crosstab soinmassamp cells soilcount.

 PAGE WIDTH 15 in.

 assign soilcount if isnull(soilcount) then 0 else soilcount.
 define tot ARRAYSUM(soilcount).
 define pct (soilcount/tot) * 100.

 template basic separator "|"
 at left field width 20, field width 25, field width 10 align center,
 field width 10 align center.

 SECTION
 HEADING
 USING basic "User Transect ID", "Soil Name as Sampled", "Number of",
 "Percent of".
 USING basic "","","Pedons", "Transect".
 DATA
 SKIP 1 LINE.
 USING basic utransectid, soinmassamp, soilcount, pct.

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

128

 end section.

#07905KS185-5910
#07105NE125-2171*

Exercise 12a.

exec sql select areasymbol, CODELABEL(farmlndcl) class, muacres
from areatype, area, legend, lmapunit, mapunit
where join areatype to area and join area to legend and
join legend to lmapunit and join lmapunit to mapunit and
areatypename matches "Non-MLRA*" and mustatus != "additional";
sort by areasymbol, class
aggregate rows areasymbol, class column muacres sum.

TEMPLATE basic SEPARATOR "|"
 AT LEFT FIELD WIDTH 8, FIELD WIDTH 33, FIELD WIDTH 10, "".

 SECTION
 HEADING
 AT LEFT "Farmland Classification Acres" WIDTH 54 ALIGN CENTER.
 SKIP 1 LINE.
 AT LEFT "_" WIDTH 54 REPEAT.
 USING basic.
 USING basic
 "Area Symbol" ALIGN CENTER,
 "Classification" ALIGN CENTER,
 "Total Acres" ALIGN CENTER.
 USING basic "_" REPEAT, "_" REPEAT, "_" REPEAT.

 DATA
 USING basic
 areasymbol INDENT 1 SUPPRESS,
 class INDENT -1,
 muacres DECIMAL 2 REPLACE NULL WITH "---".
 END SECTION.

 SECTION WHEN LAST OF areasymbol
 DATA
 USING basic.
 END SECTION.

Exercise 20a

EXEC SQL
SELECT areaname, musym, nationalmusym, muname, compname, comppct_r, repdmu, CODELABEL(reskind) kind
FROM area, legend, lmapunit, mapunit, correlation, datamapunit, OUTER (component, corestrictions)
WHERE repdmu = 1 AND
JOIN area to legend and
JOIN legend to lmapunit and
JOIN lmapunit to mapunit AND
JOIN mapunit TO correlation AND
JOIN correlation TO datamapunit AND
JOIN datamapunit to component AND
JOIN component to corestrictions;
SORT BY nationalmusym SYM, comppct_r DESC
AGGREGATE ROWS BY nationalmusym COLUMN compname NONE.

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

129

TEMPLATE dline SEPARATOR "|"
AT LEFT FIELD WIDTH 8, FIELD WIDTH 36, FIELD WIDTH 15, FIELD WIDTH 11, "".

SECTION
 HEADING
 AT LEFT "_" REPEAT WIDTH 74.
 USING dline.
 USING dline
 "NAT Map Symbol" ALIGN CENTER,
 "Map Unit Name" ALIGN CENTER,
 "Component Name" ALIGN CENTER,
 "Restriction" ALIGN CENTER.
 USING dline "_" REPEAT, "_" REPEAT, "_" REPEAT, "_" REPEAT.

 DATA
 USING dline
 nationalmusym ALIGN RIGHT INDENT 1,
 muname INDENT -1,
 compname INDENT 1,
 kind.
END SECTION.

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

130

ERROR MESSAGES

When text is identified on the general tab and html format on the report tab

When html is checked on the general tab and the data is text

When page width and length are not unlimited and output is text

Regroup error when the second column is not aggregated to none.

When a period is missing the error references the first column of the line below the line that is

missing the period.

When a Right parenthesis is missing the error reads

If the left parenthesis is missing, the error reads

NASIS User Guide

Chapter 18: Understanding NASIS SQL
(Version 6.X, May 2012)

131

When you codelabel a column but forget to give it an alias

When you have an extra comma at the end of the select list

If you forget to open the HTML and body you get the following message

	NASIS SQL Guide
	SQL
	SQL Syntax
	Keywords
	Identifiers
	Operators or Functions

	Workshop Examples and Exercises
	Data types and comparison operators
	Wildcard characters

	Queries
	Queries
	Use of the Question mark “?”
	Use of “>, <, =” comparison operator
	Use of “?”parameter
	Use of “IN ()” and “IN (?)” parameter
	Use of BETWEEN command
	Exercises

	Adding additional tables
	Target Tables
	Join Conditions
	Exercises
	Use of the OR command
	Exercises

	Arithmetic Operators
	Exercises

	Outer Joins
	Exercises

	Types of joins
	Join Examples

	Identifying Specific Joins
	Subqueries using the EXISTS operator
	Exercises

	Subqueries using the NOT EXISTS operator
	Exercises

	Subqueries using the = operator
	Correlated subquery
	Uncorrelated subquery

	Subqueries using the IN operator
	Exercises

	NASIS Reports
	Query
	SINGLE TABLE QUERY
	MULTIPLE TABLE QUERY
	Exercise 1. Creating a Default Format Report

	JOINS
	Exercise 2. OUTER Join for Component Restrictions

	CODELABEL and CODENAME
	AGGREGATION
	GROUP BY
	Exercise 3. Use of Group By
	AGGREGATE
	Exercise AGGREGATION of columns

	Aggregation Exercise
	ARITHMETRIC FUNCTIONS
	REAL TABLES
	SUBQuery
	JOINING MULTIPLE SQL STATEMENTS
	PARAMETERIZED QUERY
	Joining sub-query tables to main query
	Join two sets of data from different sub-queries
	Complex join to subquery in the “From” clause

	Query Exercises

	Data Manipulation
	DEFINE
	CODENAME and CODELABEL
	CONCATENATING OF FIELDS
	ARITHMETRIC FUNCTIONS
	NULL TRANSFORMATION
	SPRINTF commands

	ASSIGN
	DERIVE
	PARAMETER
	PARAMETER Example
	PARAMETER Examples

	REGROUP
	LOOKUP
	ARRAY
	ARRAY - another method

	WTAVG
	INCLUDE and ACCEPT
	Using Subreports

	CROSSTAB
	COUNT
	Exercise Transect Summary report

	Output
	TEMPLATE, SECTION, COLUMN FORMAT
	FONT
	MARGIN
	PAGE
	PITCH
	TEMPLATE
	HEADER and FOOTER
	HEADERS

	DATE, SUBTITLE, SKIP LINES
	SECTION
	SECTION CONDITIONAL STATEMENTS
	QUOTED function
	Exercise 6. Creating a Data Export Format

	LINE SPECIFICATIONS
	COLUMN SPECIFICATIONS
	Exercise Creating a Formatted Report

	Interpretation Reports
	MANU - Sewage Disposal text
	MANU - Sewage Disposal html

	HTML Reports
	HTML Examples
	Each report will typically have three sections, an opening, main and closing section.
	Open a HTML page align the header and color the background
	Add blank line
	Create a header
	Multiple sytles in Attribute separated by “;”
	Color a heading
	Create table with border
	Set the report name and initial header
	Define a point location for plotting
	Display point location identified above
	Create a table box with different attributes
	Create a link in an rectangle area of the report
	Create a email link
	Add a picture to your report
	Create a main report to open sub-reports
	Make a web link
	Create a heading with message for no data

	HTML Report Format Rules

	APPENDIX html formatting
	ELEMENTS
	TAGS
	COLOR CODING

	Web URL reports
	NHQ - Project Plans (all) by Soil Survey Office html

	Exercises
	Queries
	Reports

	ERROR MESSAGES

